15. Parallel Axis Theorem and Torque

A) Overview

In this unit we will continue our study of rotatial motion. In particular, we will
first prove a very useful theorem that relates mushef inertia about parallel axes. We
will then move on to develop the equation that aeiees the dynamics for rotational
motion. In so doing, we will introduce a new qugnthe torque, that plays the role for
rotational motion that force does for translatiomaltion. We will find, once again, that
the rotational analog of mass will be the momenheftia.

B) Parallel Axis Theorem
We have shown earlier that the total kinetic eperfga system of particles in any
reference frame is equal to the kinetic energyefdenter of mass of the system, defined
to be one half times the total mass times the sqofathe center of mass velocity, plus
the kinetic energy of the motion of all of the gartlative to the center of mass.
K = KF%EL + KCM

For a solid object the only possible motion relatio the center of mass is
rotation. Therefore, the kinetic energy relativéhe center of mass is just equal to one
half times the moment of inertia about a rotatigis &hrough the center of mass times the
square of the angular velocity about the centenags.
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We can use this result to calculate the momentetia about a chosen axis if the
moment of inertia about a parallel axis that patisesigh the center of mass is known.
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For example, Figure 15.1 shows the
thin rod from the last unit rotating about ar ) —»

axis perpendicular to the page at a distanc ;
D from the center of mass. We can descri _@_—
this motion, as the center of mass rotating (1) : e

about the axis with angular velocity plus  Figure 15.1

the rod rotating about its center of mass A thin rod rotates with angular velocity
with that same angular velocity Thus, about an axis perpendicular to the page
for every rotation the center of mass makeslocated a distand® from the center of
about the axis, the rod makes one revolutiomass of the rod.

about its center of mass.

We start from our previous result that the totakkic energy about the chosen
axis can be written in terms of the moment of iimesbout that axis.

K. =21l __af
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Now we know this kinetic energy must be equal ®mghm of the kinetic energy of the
center of mass and the kinetic energy relativééocenter of mass.
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Now the velocity of the center of mass in the labnfe is just equal to the product»f
and w, and the kinetic energy relative to the center aéss just equal to ¥z the product
of the moment of inertia about this parallel axasl éhe square of the angular velocity.

Kow =3M(D@)? +1 5,07
We can cancel a factor of one half omega squaced &ach term in the kinetic energy
eguation to determine that the total moment oftiaebout the chosen axis is just the

moment of inertia about a parallel axis passingugh the center of mass plus the
moment of inertia of the center of mass, treated pasint particle, about the chosen axis.

Itotal = MDZ + ICM
This result is known as the parallel axis theoraah iawill prove to be very useful in the

next few units. You can verify that this parall&lsatheorem predicts the relationship we
obtained last time for the two moments of inertiad thin rod.

C) Example: Moment of Inertia of a Dumbbell

We can now use this parallel axis theorem to ¢aleuhe moment of inertia of a
dumbbell made up of two solid spheres connectea $0ylid rod about an axis that is
perpendicular to the rod and passes through it®rcas shown in Figure 15.2.

We'll start by using our result from the last

unit that the moment of inertia of the ; L
dumbbell about the given axis is equal to the
sum of the moments of inertia of its
components, the rod and the two spheres,
about that same axis. To find the moments
inertia of the spheres about the axis through m,..
the center of the rod, we will apply the parall <=

axis theorem we developed in the last sectic R
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Namely, we know that the moment of inertia *‘ -
of a solid sphere about an axis passing throt  Figyre 15.2 b=
its center is equal to 2/5 the product of its A dumbbell composed of two spherical
mass and the square of its radius. masses of radiu® and mas$/ separated
— E 2 by a distancel are connected by a rod
I sphere,CM MR .
‘ with massm, .
Applying the parallel axis theorem, we see
that the moment of inertia of each sphere abougitren axis is just given by:.
2 L)

I sphere,axis = g MR2 +M (Ej
To find the total moment of inertia of the dumbbuelé just add the contributions from
the two spheres to the moment of inertia of thie thd about its center to get the result:
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D) Torque and Angular Acceleration

So far in our study of rotations, we have maddiexgonnections to the
kinematics of one-dimensional linear motion anddbecept of mass. We will now use
Newton’s second law to develop the equation thatriilees the dynamics of rotations.

Figure 15.3 shows a point mass, constrained teenmow® circle being acted upon
by an arbitrary forc&. We choose to use polar ‘
coordinatesr(and ) to describe this motion 1 5
sincer will be constant Since the mass is
moving in a circle, we know there must be a
component of the net force acting on the mass
that is radial to supply the radial acceleration
(V’/r). In addition, there may be a component «
the net force that is tangential which will result
in a non-zero tangential acceleration. This _
tangential acceleration is simply related to the / K
angular acceleration of the rotation. r) \

Fg =mag =nra | y

We know that the rotational analog of
mass is the moment of inertia, which in this ca
is just equal to the product of the mass of the |
particle and the square of its distance from the
axis of rotation.

I=mr2 \

If we now multiply both sides of our force \\____ J
equation by this distana:ewe_ find that the Figure 15_é
product of r and the tangential component of th

A point mass costrained to move on a
force is equal to the product of the moment of P

inertia of the object about the rotation axis and circle of radiug is act_ed upon by a
) forceF. The tangential component of
the angular acceleration.

(Fo=la this force,F, gives rise to an angular

The right hand side now looks like a rotational acceleratior:

version of Newton’s second law: namely, the prodii¢he rotational mass (the moment

of inertia) and the rotational acceleration. Itukbbe natural to identify the left hand

side of this equation as the rotational forcedekd, we will identify the product of the

tangential force and the distance between the @i point of this force and the

rotation axis as thirque, the quantity that plays the role of force in tmtaal dynamics.
T=rkg

IN the next sections we will formally defirterque as avector quantity and will arrive at

a general vector equation that is the rotationedive of Newton’s second law.
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E) Example: Closing a Door

We've just seen that a torque, the product ohgeatial force and the distance
between the application point of this force andrtftation axis, produces an angular
acceleration. As a concrete example, Figure 1fodvs the overhead view of an open



door. To close this door, you need to push ofere we
see a forc& being applied a distancdrom the hinge.
The door is heavy and barely moves as you push on i
What would you change about the way you are pushing
order to close it quicker? Your intuition tells ythat you
would either push harder, or you would push ondibher

at a poinfurther from the hinge. You would certainly not
try pushing closer to the hinge, and you would alsb
change the direction you were pushing to be morallpa
to the door. In other words, the biggest effect gan

have on the door is to push on it as hard as dessiba
direction perpendicular to the door, at a pointffam the

hinge. Figure 15.4

An overhead view of a closing
door. The forcé applies a
torque about the hinge which
causes an angular acceleration.

The equations we derived in the previous sectibruse
exactly the same thing! We expect the angular
acceleration to be biggest when the torque is lsiggén
other words the door will close fastest when thique is
large. The torque is largest when the distanoetween the axis and the perpendicular
force is biggest, and when the perpendicular fassdf is biggest. If we push parallel to
the door, there is no perpendicular force compoaadtwe don’t expect the door to start
moving at all!

In the next section we will generalize this dgsiion of rotations by defining
torque, angular velocity, and angular accelerai®nector quantities and by defining the
cross product of two vectors..

F) Torque and the Cross Product
Figure 15.5 shows a spinning top. So far, we ltlgeribed this motion in terms
of one dimensional variables, the angular displaggnthe angular velocity and the

‘ Counter-Clockwise Rotation Clockwise Rotation
"i_. : is Positive is Negative
-

Figure 15.5
A top spins on its axis. A counterclockwise rotatis defined to be positive.



angular acceleration, all defined relative to tkis af rotation. We will need to
generalize this description to three dimensionsnae allow the direction of the
rotation axis itself to change.

If a rotating object is viewed in a reference feam which the rotation axis is
perpendicular to the page, as shown in Figure 1i5i&conventional to define a counter-
clockwise rotation as positive and a clockwisetroteas negative. We adopt this
convention in order to match the usual measurewfahie angle theta relative to the x-
axis in a right-handed Cartesian coordinate system.

There is a simple rule involving the right handttban be used to define the
directions of the angular velocity vector. Namelv
if you curl the fingers of your right hand in the \
direction of rotation of the object, your thumb lwil "'.
point in the direction of the angular velocity e-q
vector of the object. In other words, if some obje
is spinning in the counter-clockwise direction in
thex-y plane, curling the fingers of your right
hand in this direction results in your thumb
pointing in the £ direction which we define to be
the direction of the angular velocity vector.
Similarly, if the object is rotating in the clocksé
direction, the same exercise results in your thun
pointing in the zdirection.

We use the same right hand rule to defin
the direction of the angular acceleration. For ,
example, if the magnitude of the angular velocity F19ure 15.6 .
increases in time, then the angular acceleration 1 heright hand rule for determining
vector haghe same direction as that of the angular the direction of the angular veloicty
velocity. If the magnitude of the angular velocity @ Curl your fingers in the direction
decreasesin time, then the angular acceleration  Of rotation and your thumb will
vector has thepposite direction as that of the point along the direction ab:
angular velocity.

One nice feature of using the right hand ruledfing the direction of vectors in
systems involving rotation is that these vectoenttlo not rely on the choice of a
coordinate system at all; the rotation vector bezomproperty of the object itself.

Now that we have defined the direction of the daigvelocity and angular
acceleration vectors, we will now define the torqsea vector quantity and obtain the
vector equation that determines rotational dynamics

We have shown that the magnitude of the torqgévien by the product of the
length of the line connecting the axis to the pathere the force acts, and the
component of the forcle that is perpendicular to this line. If we defi@as the angle



between this line and the force as shown in Fig@bté&, then the perpendicular
component of the force is just equal to the proddiét and sir6.

Figure 15.8
The direction of the cross product of two vectérandB is
given by a right hand rule: point the fingers otiyaight

hand in the direction oA and curl them toward the direction
of B, then your thumb points in the direction4XB.

Figure 15.7
The magnitude of the torque exerted by
forceF is equal taFsing.

If we consider the line connecting the rotatiorsd® the force as a vector then
the magnitude of the torque is given by the magiaitof the vectoF times the
magnitude of the vectartimes the sin of the angle between them. We wiritethis way
because there is a mathematical construct caleedrtss product that has exactly this

same property. Namely, given two vectérandB, the magnitude oAXB is given by
this same form.

‘Ax é‘ = ABsiné
The direction ofAXB is perpendicular to both andB and is given by the right hand rule
shown in Figure 15.8. If you point the fingers oluy right hand in the direction &f and

curl them toward the direction &, then your thumb points in the directionfXB.

Using this definition of the cross product, andatwve already know about the
right hand rule, we can write a vector equation tieatly summarizes everything we
know so far.

Tnet =10
On the right hand side we have the angular acdelaraector, whose direction is found
by applying the right hand rule. On the left hamttsve have the torque vector, whose
direction is also found using the right hand rule.

In the example shown, we see that the directidtiseotorque and the angular
acceleration are the same; they are both parallblet rotation axis pointing out of the
page. This equation, the net toque about anisegual to the product of the moment of
inertia about that axis and the angular accelaraisototally general. This equation is
just Newton’s second law applied to a system ofigas in rotation!



Main Points

¢ Parallel Axis Theorem

I.,=MD*+1.

The moment of inertia about a o
chosen axis is egual fo Hie

moment of inerfia about a pariiel

axis puessing through the center gf

mass plus the moment of inertia —J)—»
of the cenler of mass, treated as a !
point particle, about the chosen .

* Torque

The concept of torgue plays the role for
rofational molion that force does fro

fransiifional mofion. F=7x F

The divection of the forgite vecior {5
defermined by a right humd rule: curl
Jingers from v info F and then fuamb
points in direction of lorgie.
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* Dynamics Equation for Rotational Motion

The equation fiat defermines the
dynamics of rofafional mofion is derived
Jrom Newion’s second oy,

The net forque about an axis is equal fo
the product of the moment of fnertia
about that axis and the angular
acceleration.



