
15.  Parallel Axis Theorem and Torque  
 
A) Overview 
 In this unit we will continue our study of rotational motion.  In particular, we will 
first prove a very useful theorem that relates moments of inertia about parallel axes.  We 
will then move on to develop the equation that determines the dynamics for rotational 
motion.  In so doing, we will introduce a new quantity, the torque, that plays the role for 
rotational motion that force does for translational motion.  We will find, once again, that 
the rotational analog of mass will be the moment of inertia. 
   
B) Parallel Axis Theorem 
 We have shown earlier that the total kinetic energy of a system of particles in any 
reference frame is equal to the kinetic energy of the center of mass of the system, defined 
to be one half times the total mass times the square of the center of mass velocity, plus 
the kinetic energy of the motion of all of the parts relative to the center of mass.    
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 For a solid object the only possible motion relative to the center of mass is 
rotation.  Therefore,  the kinetic energy relative to the center of mass is just equal to one 
half times the moment of inertia about a rotation axis through the center of mass times the 
square of the angular velocity about the center of mass. 

2
2
12

2
1

, CMCMCMlabsystem MvIK += ω  

We can use this result to calculate the moment of inertia about a chosen axis if the 
moment of inertia about a parallel axis that passes through the center of mass is known.  
 
 For example, Figure 15.1 shows the 
thin rod from the last unit rotating about an 
axis perpendicular to the page at a distance 
D from the center of mass.  We can describe 
this motion, as the center of mass rotating 
about the axis with angular velocity ω, plus 
the rod rotating about its center of mass 
with that same angular velocity ω.  Thus, 
for every rotation the center of mass makes 
about the axis, the rod makes one revolution 
about its center of mass.  
 
 We start from our previous result that the total kinetic energy about the chosen 
axis can be written in terms of the moment of inertia about that axis.   
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Now we know this kinetic energy must be equal to the sum of the kinetic energy of the 
center of mass and the kinetic energy relative to the center of mass.   
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Figure 15.1
A thin rod rotates with angular velocity ω
about an axis perpendicular to the page 
located a distance D from the center of 
mass of the rod.  



Now the velocity of the center of mass in the lab frame is just equal to the product of D 
and ω, and the kinetic energy relative to the center of mass is just equal to ½ the product 
of the moment of inertia about this parallel axis and the square of the angular velocity.   
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We can cancel a factor of one half omega squared from each term in the kinetic energy 
equation to determine that the total moment of inertia about the chosen axis is just the 
moment of inertia about a parallel axis passing through the center of mass plus the 
moment of inertia of the center of mass, treated as a point particle, about the chosen axis.  

CMtotal IMDI += 2  

This result is known as the parallel axis theorem and it will prove to be very useful in the 
next few units. You can verify that this parallel axis theorem predicts the relationship we 
obtained last time for the two moments of inertia for a thin rod. 
 
C) Example: Moment of Inertia of a Dumbbell 
 We can now use this parallel axis theorem to calculate the moment of inertia of a 
dumbbell made up of two solid spheres connected by a solid rod about an axis that is 
perpendicular to the rod and passes through its center as shown in Figure 15.2. 
 
We’ll start by using our result from the last 
unit that the moment of inertia of the 
dumbbell about the given axis is equal to the 
sum of the moments of inertia of its 
components, the rod and the two spheres, 
about that same axis.  To find the moments of 
inertia of the spheres about the axis through 
the center of the rod, we will apply the parallel 
axis theorem we developed in the last section.   
  
Namely, we know that the moment of inertia 
of a solid sphere about an axis passing through 
its center is equal to 2/5 the product of its 
mass and the square of its radius.   

  2
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Applying the parallel axis theorem, we see 
that the moment of inertia of each sphere about the given axis is just given by:.    
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To find the total moment of inertia of the dumbbell, we just add the contributions from 
the two spheres to the moment of inertia of the thin rod about its center to get the result:  
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Figure 15.2
A dumbbell composed of two spherical 
masses of radius R and mass M separated 
by a distance d are connected by a rod 
with mass mrod.  



D) Torque and Angular Acceleration 
 So far in our study of rotations, we have made explicit connections to the 
kinematics of one-dimensional linear motion and the concept of mass.  We will now use 
Newton’s second law to develop the equation that describes the dynamics of rotations.   
 
 Figure 15.3 shows a point mass, constrained to move in a circle being acted upon 
by an arbitrary force F.  We choose to use polar 
coordinates (r and θ) to describe this motion 
since r will be constant   Since the mass is 
moving in a circle, we know there must be a 
component of the net force acting on the mass 
that is radial to supply the radial acceleration 
(v2/r).  In addition, there may be a component of 
the net force that is tangential which will result 
in a non-zero tangential acceleration.  This 
tangential acceleration is simply related to the 
angular acceleration of the rotation. 
  αθθ mrmaF ==  

 We know that the rotational analog of 
mass is the moment of inertia, which in this case 
is just equal to the product of the mass of the 
particle and the square of its distance from the 
axis of rotation.   

  2mrI =  
If we now multiply both sides of our force 
equation by this distance r, we find that the 
product of r and the tangential component of the 
force is equal to the product of the moment of 
inertia of the object about the rotation axis and 
the angular acceleration.  
  αθ IrF =  

The right hand side now looks like a rotational 
version of Newton’s second law: namely, the product of the rotational mass (the moment 
of inertia) and the rotational acceleration.  It would be natural to identify the left hand 
side of this equation as the rotational force.   Indeed, we will identify the product of the 
tangential force and the distance between the application point of this force and the 
rotation axis as the torque, the quantity that plays the role of force in rotational dynamics.  
  θτ rF≡  

IN the next sections we will formally define torque as a vector quantity and will arrive at 
a general vector equation that is the rotational version of Newton’s second law. 
   
E) Example: Closing a Door 
 We’ve just seen that a torque, the product of a tangential force and the distance 
between the application point of this force and the rotation axis, produces an angular 
acceleration.  As a concrete example, Figure 15.4 shows the overhead view of an open 

Figure 15.3
A point mass costrained to move on a 
circle of radius r is acted upon by a 
force F.  The tangential component of 
this force, Fθ,  gives rise to an angular 
acceleration αααα.



door.  To close this door, you need to push on it.  Here we 
see a force F being applied a distance r from the hinge.   
The door is heavy and barely moves as you push on it. 
What would you change about the way you are pushing in 
order to close it quicker? Your intuition tells you that you 
would either push harder, or you would push on the door 
at a point further from the hinge. You would certainly not 
try pushing closer to the hinge, and you would also not 
change the direction you were pushing to be more parallel 
to the door. In other words, the biggest effect you can 
have on the door is to push on it as hard as possible, in a 
direction perpendicular to the door, at a point far from the 
hinge. 
 
The equations we derived in the previous section tell us 
exactly the same thing! We expect the angular 
acceleration to be biggest when the torque is biggest – in 
other words the door will close fastest when the torque is 
large. The torque is largest when the distance r between the axis and the perpendicular 
force is biggest, and when the perpendicular force itself is biggest.  If we push parallel to 
the door, there is no perpendicular force component and we don’t expect the door to start 
moving at all!  
 
 In the next section we will generalize this description of rotations by defining 
torque, angular velocity, and angular acceleration as vector quantities and by defining the 
cross product of two vectors.. 
 
F) Torque and the Cross Product 
 Figure 15.5 shows a spinning top.  So far, we have described this motion in terms 
of one dimensional variables, the angular displacement, the angular velocity and the 

Figure 15.4
An overhead view of a closing 
door.  The force F applies a 
torque about the hinge which 
causes an angular acceleration.

Figure 15.5
A top spins on its axis. A counterclockwise rotation is defined to be positive.



angular acceleration, all defined relative to the axis of rotation.  We will need to 
generalize this description to three dimensions when we allow the direction of the 
rotation axis itself to change.  
 
 If a rotating object is viewed in a reference frame in which the rotation axis is 
perpendicular to the page, as shown in Figure 15.5, it is conventional to define a counter-
clockwise rotation as positive and a clockwise rotation as negative. We adopt this 
convention in order to match the usual measurement of the angle theta relative to the x-
axis in a right-handed Cartesian coordinate system.  
 
 There is a simple rule involving the right hand that can be used to define the 
directions of the angular velocity vector.  Namely, 
if you curl the fingers of your right hand in the 
direction of rotation of the object, your thumb will 
point in the direction of the angular velocity 
vector of the object. In other words, if some object 
is spinning in the counter-clockwise direction in 
the x-y plane, curling the fingers of your right 
hand in this direction results in your thumb 
pointing in the +z direction which we define to be 
the direction of the angular velocity vector.  
Similarly, if the object is rotating in the clockwise 
direction, the same exercise results in your thumb 
pointing in the –z direction.   
 
 We use the same right hand rule to define 
the direction of the angular acceleration.  For 
example, if the magnitude of the angular velocity 
increases in time, then the angular acceleration 
vector has the same direction as that of the angular 
velocity.  If the magnitude of the angular velocity 
decreases in time, then the angular acceleration 
vector has the opposite direction as that of the 
angular velocity.  
 
 One nice feature of using the right hand rule to define the direction of vectors in 
systems involving rotation is that these vectors then do not rely on the choice of a 
coordinate system at all; the rotation vector becomes a property of the object itself.  
 
 Now that we have defined the direction of the angular velocity and angular 
acceleration vectors, we will now define the torque as a vector quantity and obtain the 
vector equation that determines rotational dynamics. 
 
 We have shown that the magnitude of the torque is given by the product of the 
length of the line connecting the axis to the point where the force acts, r, and the 
component of the force F that is perpendicular to this line. If we define θ as the angle 

Figure 15.6
The right hand rule for determining 
the direction of the angular veloicty
ω: Curl your fingers in the direction 
of rotation and your thumb will 
point along the direction of ω.



between this line and the force as shown in Figure 15.7, then the perpendicular 
component of the force is just equal to the product of F and sinθ.  

 
 If we consider the line connecting the rotation axis to the force as a vector then 
the magnitude of the torque is given by the magnitude of the vector F times the 
magnitude of the vector r times the sin of the angle between them. We write it in this way 
because there is a mathematical construct called the cross product that has exactly this 
same property. Namely, given two vectors A and B, the magnitude of AXB is given by 
this same form.   

θsinABBA =×
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The direction of AXB is perpendicular to both A and B and is given by the right hand rule 
shown in Figure 15.8. If you point the fingers of your right hand in the direction of A and 
curl them toward the direction of B, then your thumb points in the direction of AXB.  
 
 Using this definition of the cross product, and what we already know about the 
right hand rule, we can write a vector equation that neatly summarizes everything we 
know so far. 
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On the right hand side we have the angular acceleration vector, whose direction is found 
by applying the right hand rule. On the left hand side we have the torque vector, whose 
direction is also found using the right hand rule.  
 
 In the example shown, we see that the directions of the torque and the angular 
acceleration are the same; they are both parallel to the rotation axis pointing out of the 
page.   This equation, the net toque about an axis is equal to the product of the moment of 
inertia about that axis and the angular acceleration, is totally general.  This equation is 
just Newton’s second law applied to a system of particles in rotation! 
 

Figure 15.7
The magnitude of the torque exerted by 
force F is equal to rFsinθ.

Figure 15.8
The direction of the cross product of two vectors A and B is 
given by a right hand rule: point the fingers of your right 
hand in the direction of A and curl them toward the direction 
of B, then your thumb points in the direction of AXB.



 
 

 
 

 


