Your comments

Having taken ece 110 made it easy for me to grasp most of the concepts.

God I can go to bed now. Oh wait I can't cuz EXAM??!?!!111

I know that this course has to move at a fast pace and that there is no time to dilly dally and putts around, but I really really really don't like the idea of having a prelecture and lecture over a topic not covered on an upcoming exam. I find that I can't give the prelecture or the lecture the time they deserve to solidify my understanding, so this prelecture, though important, was gone through very quickly.

This stuff is tough, I think this is mostly because we were thrown a ton of unfamiliar variables. Could we go over what all they exactly mean?

Current density should be covered a little more thoroughly.

PLEASE go over how to calculate voltage drops across a capacitor!

Please help. I'm stressing out because the test is next Wednesday and we have to know circuits and all these different values (Q, I, R, V) with resistors and capacitors. For someone who has never done this before, this is hard!!!

Electric Current

Physics 212 Lecture 9

Today's Concept:

Ohm's Law, Resistors in circuits

A Big Idea Review

Coulomb's Law

Force law between point charges

$$\vec{F}_{1,2} = \frac{kq_1q_2}{r_{1,2}^2} \, \hat{r}_{1,2}$$

Electric Field

Force per unit charge

$$\vec{E} \equiv \frac{\vec{F}}{q}$$

Electric Field

Property of Space **Created by Charges** Superposition

Gauss' Law

Flux through closed surface is always proportional to charge enclosed

$$\int \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$$

Gauss' Law

Can be used to determine E field

Electric Potential

unit charge

Electric Potential Potential energy per
$$\Delta V_{a o b} \equiv \frac{\Delta U_{a o b}}{q} = -\int\limits_a^b \vec{E} \cdot d\vec{l}$$
 unit charge

Capacitance

Relates charge and potential for two conductor system

$$C \equiv \frac{Q}{V}$$

Electric Potential

Scalar Function that can be used to determine E

$$\vec{E} = -\vec{\nabla}V$$

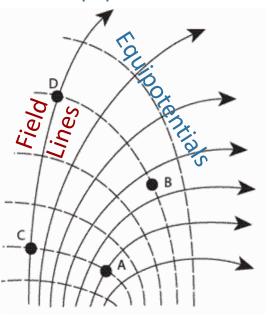
Applications of Big Ideas

Conductors

Charges free to move

What Determines

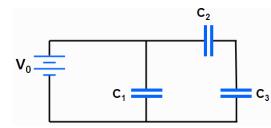
How They Move?



They move until

E = 0 in conductor determines charge densities on surfaces

Field Lines & Equipotentials


Work Done By E Field

$$W_{a\to b} = \int_{a}^{b} \vec{F} \cdot d\vec{l} = \int_{a}^{b} q\vec{E} \cdot d\vec{l}$$

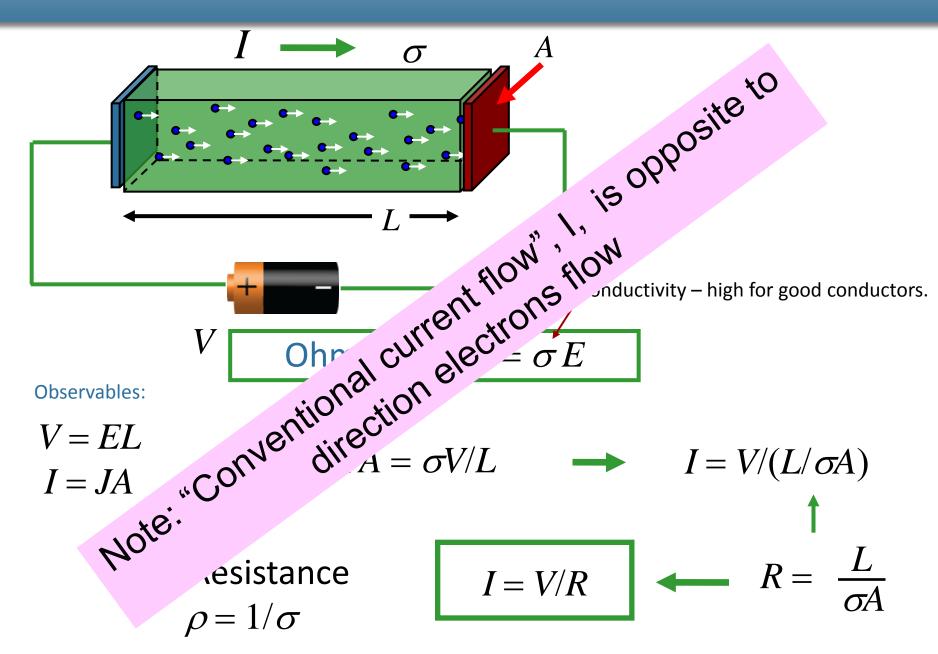
Change in Potential Energy

$$\Delta U_{a \to b} = -W_{a \to b} = -\int_{a}^{b} q\vec{E} \cdot d\vec{l}$$

Capacitor Networks

Series:

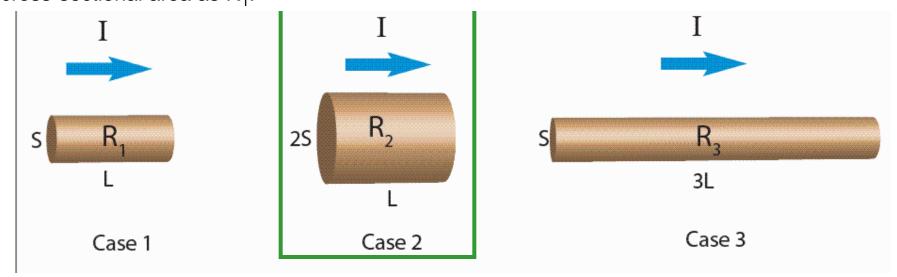
$$(1/C_{23}) = (1/C_2) + (1/C_3)$$
Parallel
 $C_{123} = C_1 + C_{23}$


Current and Resistance

Key Concepts:

- 1) How resistance depends on A, L, s, r
- 2) How to combine resistors in series and parallel
- 3) Understanding resistors in circuits

Today's Plan:


- 1) Review of resistance & preflights
- 2) Work out a circuit problem in detail

CheckPoint 3

The SAME amount of current I passes through three different resistors. R_2 has twice the cross-sectional area and the same length as R_1 , and R_3 is three times as long as R_1 but has the same cross-sectional area as R_1 .

In which case is the CURRENT DENSITY through the resistor the smallest?

$$J \equiv \frac{I}{A} \longrightarrow J_1 = J_3 = 2J_2$$
Same Current $\longrightarrow J \propto \frac{1}{A}$

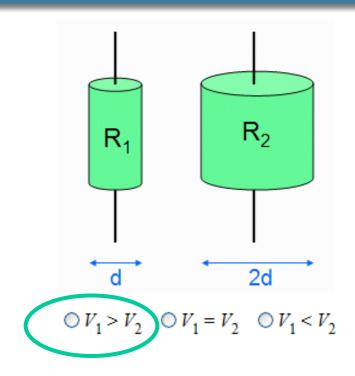
Electricity & Magnetism Lecture 9, Slide 7

This is just like Plumbing!

I is like flow rate of water

V is like pressure

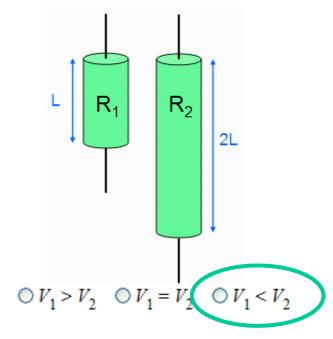
R is how hard it is for water to flow in a pipe

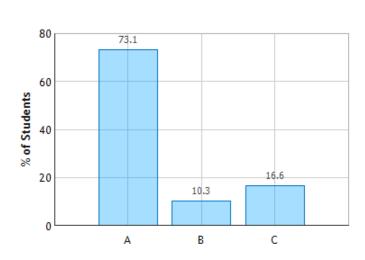

$$R = \frac{L}{\sigma A}$$

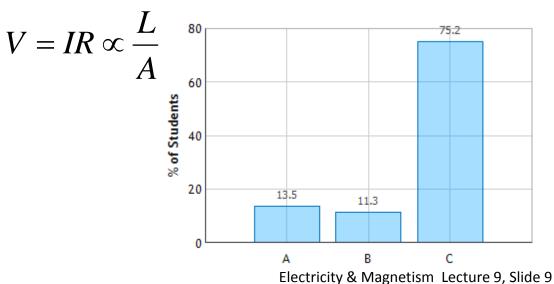
To make R big, make L long or A small

To make R small, make L short or A big

CheckPoint 1a

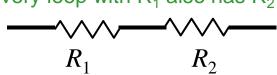

CheckPoint 1b




Same current through both resistors

Compare voltages across resistors

$$R \propto \frac{L}{A}$$



Resistor Summary

Series

Every loop with R₁ also has R₂

Wiring

Each resistor on the same wire.

Voltage

<u>Different</u> for each resistor.

$$V_{total} = V_1 + V_2$$

Current

Same for each resistor

$$I_{total} = I_1 = I_2$$

Resistance

Increases

$$R_{eq} = R_1 + R_2$$

Parallel

There is a loop that contains ONLY R₁ and R₂

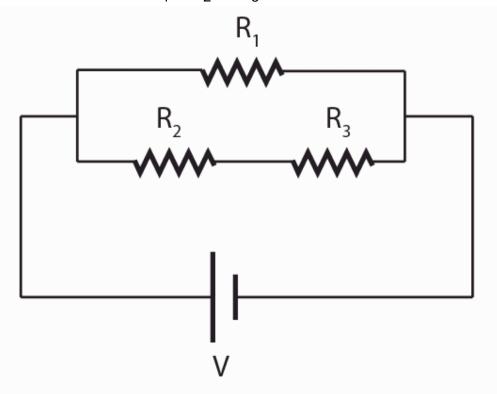
Each resistor on a different wire.

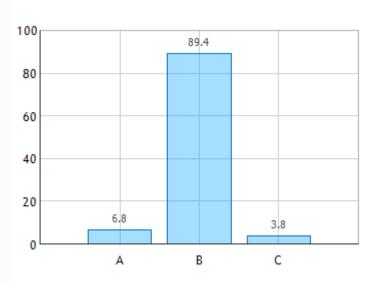
Same for each resistor.

 R_2

$$V_{total} = V_1 = V_2$$

Different for each resistor


$$I_{total} = I_1 + I_2$$


Decreases

$$1/R_{eq} = 1/R_1 + 1/R_2$$

CheckPoint 2a

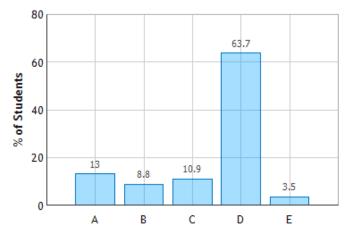
Three resistors are connected to a battery with emf V as shown. The resistances of the resistors are all the same, i.e. $R_1 = R_2 = R_3 = R$.

Compare the current through R₂ with the current through R₃:

A.
$$I_2 > I_3$$

B.
$$I_2 = I_3$$

C.
$$I_2 < I_3$$


$$R_2$$
 in series with R_3

Current through R_2 and R_3 is the same

$$I_{23} = \frac{V}{R_2 + R_3}$$

Checkpoint 2b

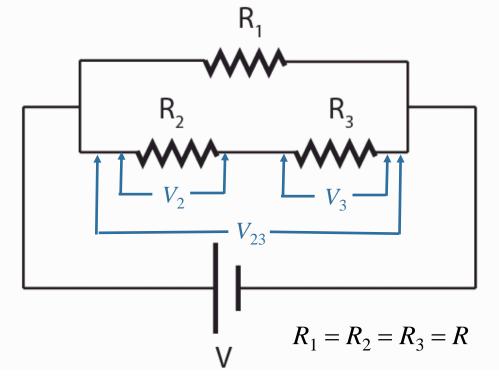
Compare the current through R_1 with the current through R_2

$$A I_1/I_2 = 1/2$$

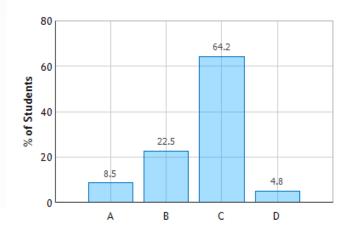
$$I_1/I_2 = 1/3$$

$$C I_1/I_2 = 1$$

$$I_1/I_2 = 2$$


$$I_1/I_2 = 3$$

We know:
$$I_{23} = \frac{V}{R_2 + R_3}$$


$$I_1 = \frac{V}{R_1}$$

$$I_1 = I_{23} \frac{R_2 + R_3}{R_1}$$

$$\frac{I_1}{I_{23}} = \frac{R_2 + R_3}{R_1} = 2$$

CheckPoint 2c

Compare the voltage across R_2 with the voltage across R_3

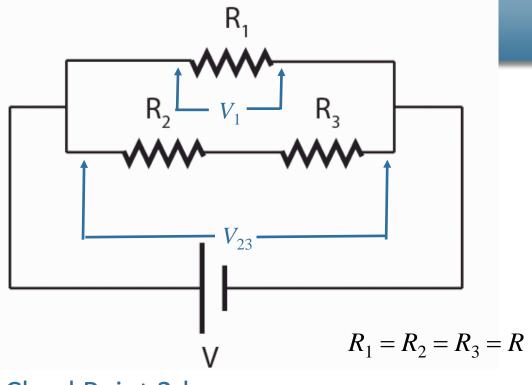
$$A$$
 $V_2 > V_3$

$$\mathsf{B} \qquad V_2 = V_3 = V$$

$$D V_2 < V_3$$

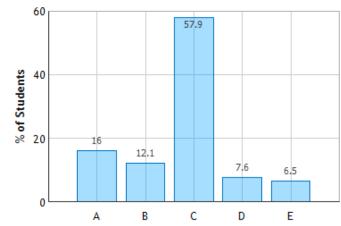
$$V_2 = I_2 R_2$$

$$V_3 = I_3 R_3$$


$$I_2 = I_3$$
 (Series)
 $R_2 = R_3$ (Problem statement)

$$V_2 = V_3$$

$$V_{23} = V$$


$$V_{23} = V_2 + V_3$$

$$V_2 = V_3 = \frac{V}{2}$$

Resistor Network: Question 5 (N = 820)

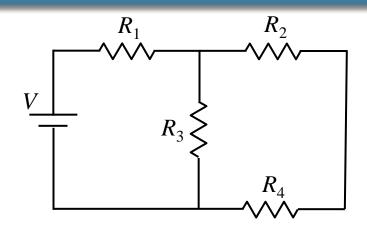
CheckPoint 2d

Compare the voltage across R_1 with the voltage across R_2

B
$$V_1 = \frac{1}{2} V_2 = V$$

D
$$V_1 = \frac{1}{2} V_2 = \frac{1}{5} V$$

$$V_1 = \frac{1}{2} V_2 = \frac{1}{2} V$$


 R_1 in parallel with series combination of R_2 and R_3

$$V_1 = V_{23}$$

$$R_2 = R_3 \Longrightarrow V_2 = V_3$$

$$V_{23} = V_2 + V_3 = 2V_2$$

$$\longrightarrow$$
 $V_1 = 2V_2 = V$

In the circuit shown: V = 18V,

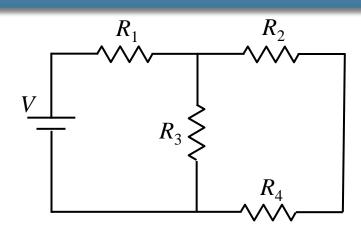
$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

Conceptual Analysis:

Ohm's Law: when current I flows through resistance R, the potential drop V is given by: V = IR.

Resistances are combined in series and parallel combinations


$$R_{series} = R_a + R_b$$
$$(1/R_{parallel}) = (1/R_a) + (1/R_b)$$

Strategic Analysis:

Combine resistances to form equivalent resistances

Evaluate voltages or currents from Ohm's Law

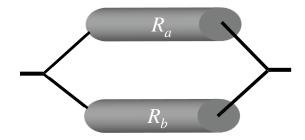
Expand circuit back using knowledge of voltages and currents

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

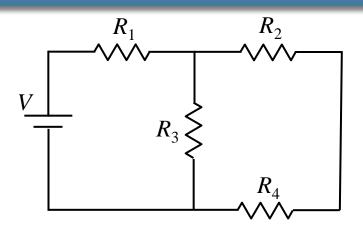
Combine Resistances:


 R_1 and R_2 are connected:

- A) in series
- B) in parallel

C) neither in series nor in parallel

Parallel Combination

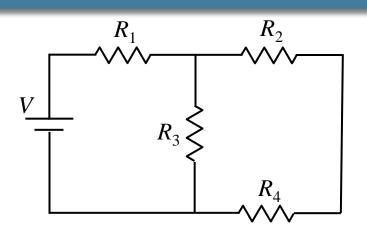


Parallel: Can make a loop that contains only those two resistors

Series Combination

Series: Every loop with resistor 1 also has resistor 2.

In the circuit shown: V = 18V,

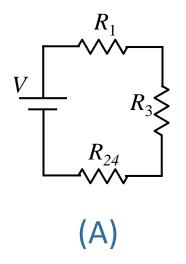

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

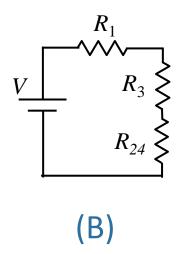
What is V_2 , the voltage across R_2 ?

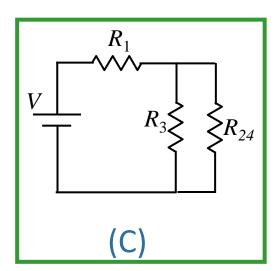
We first will combine resistances R_2 , R_3 , R_4 :

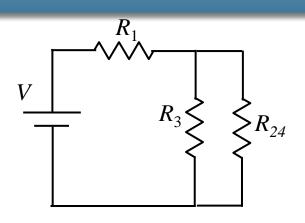
Which of the following is true?

- A) R_2 , R_3 and R_4 are connected in series
- B) R_2 , R_3 , and R_4 are connected in parallel
- C) R_3 and R_4 are connected in series (R_{34}) which is connected in parallel with R_2
- D) R_2 and R_4 are connected in series (R_{24}) which is connected in parallel with R_3
- E) R_2 and R_4 are connected in parallel (R_{24}) which is connected in parallel with R_3


In the circuit shown: V = 18V,


$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.


What is V_2 , the voltage across R_2 ?


 R_2 and R_4 are connected in series (R_{24}) which is connected in parallel with R_3

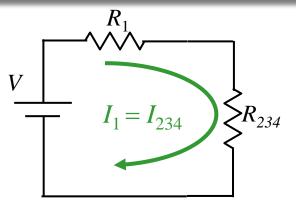
Redraw the circuit using the equivalent resistor R_{24} = series combination of R_2 and R_4 .

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

Combine Resistances:

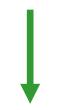

 R_2 and R_4 are connected in series = R_{24} R_3 and R_{24} are connected in parallel = R_{234}

What is the value of R_{234} ?

A)
$$R_{234} = 1 \ \Omega$$
 B) $R_{234} = 2 \ \Omega$ C) $R_{234} = 4 \ \Omega$ D) $R_{234} = 6 \ \Omega$

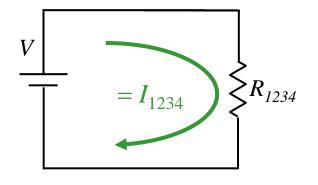
$$R_2$$
 and R_4 in series $R_{24} = R_2 + R_4 = 2\Omega + 4\Omega = 6\Omega$

$$(1/R_{parallel}) = (1/R_a) + (1/R_b)$$
 \longrightarrow $1/R_{234} = (1/3) + (1/6) = (3/6) \Omega^{-1}$ \longrightarrow $R_{234} = 2 \Omega$

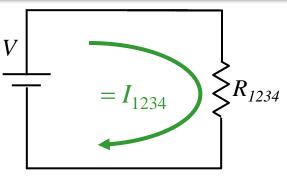


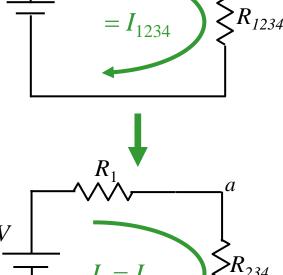
In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.


$$R_{24} = 6\Omega$$
 $R_{234} = 2\Omega$

What is V_2 , the voltage across R_2 ?




 R_1 and R_{234} are in series. $R_{1234} = 1 + 2 = 3 \Omega$

Our next task is to calculate the total current in the circuit

Ohm's Law tells us:
$$I_{1234} = V/R_{1234}$$

= 18 / 3
= 6 Amps

In the circuit shown: V = 18V, $R_1 = 1\Omega$, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

$$R_{24} = 6\Omega$$
 $R_{234} = 2\Omega$ $I_{1234} = 6A$

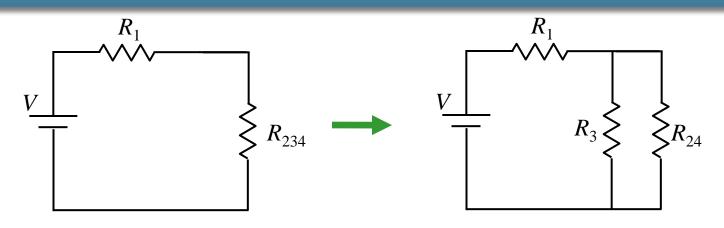
What is V_2 , the voltage across R_2 ?

 $I_{234} = I_{1234}$ Since R_1 in series with R_{234}

$$V_{234} = I_{234} R_{234}$$
$$= 6 \times 2$$

$$= 12 \text{ Volts}$$

What is V_{ab} , the voltage across R_{234} ?


A)
$$V_{ab} = 1 \ V$$

B)
$$V_{ab} = 2 V$$

C)
$$V_{ab} = 9 V$$

A)
$$V_{ab} = 1 \ V$$
 B) $V_{ab} = 2 \ V$ C) $V_{ab} = 9 \ V$ D) $V_{ab} = 12 \ V$ E) $V_{ab} = 16 \ V$

E)
$$V_{ab} = 16 \ V$$

V = 18V $R_1 = 1\Omega$ $R_2 = 2\Omega$ $R_3 = 3\Omega$ $R_4 = 4\Omega$ $R_{24} = 6\Omega$ $R_{234} = 2\Omega$ $I_{1234} = 6 \text{ Amps}$ $I_{234} = 6 \text{ Amps}$ $V_{234} = 12V$ What is V_2 ?

Which of the following are true?

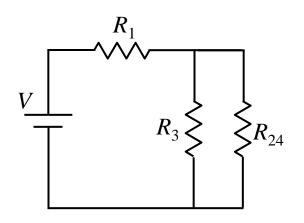
A)
$$V_{234} = V_{24}$$

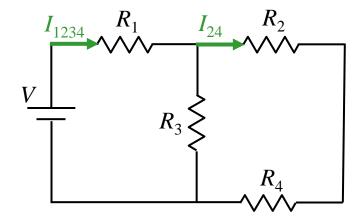
B)
$$I_{234} = I_{24}$$

C) Both A+B

D) None

 R_3 and R_{24} were combined in parallel to get R_{234}




Voltages are same!

Ohm's Law

$$I_{24} = V_{24} / R_{24}$$

= 12 / 6
= 2 Amps

V = 18V $R_1 = 1\Omega$ $R_2 = 2\Omega$ $R_3 = 3\Omega$ $R_4 = 4\Omega$. $R_{24} = 6\Omega$ $R_{234} = 2\Omega$ $I_{1234} = 6 \text{ Amps}$ What is V_2 ?

Which of the following are true?

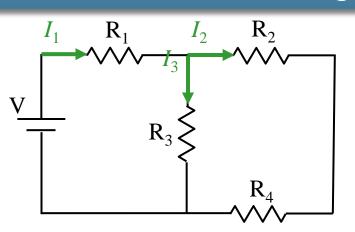
A)
$$V_{24} = V_2$$
 B) $I_{24} = I_2$

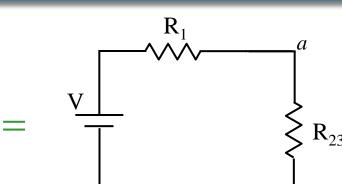
B)
$$I_{24} = I_2$$

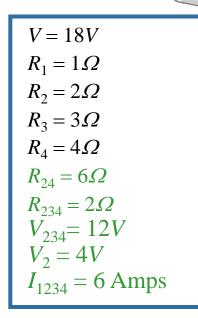
C) Both A+B

D) None

 R_2 and R_4 where combined in series to get R_{24} — Currents are same!


Ohm's Law


$$V_2 = I_2 R_2$$


$$= 2 \times 2$$

$$= 4 \text{ Volts!}$$

Quick Follow-Ups

What is I_3 ?

A)
$$I_3 = 2 A$$

B)
$$I_3 = 3 A$$

A)
$$I_3 = 2 A$$
 B) $I_3 = 3 A$ C) $I_3 = 4 A$

$$V_3 = V_{234} = 12V$$

$$V_3 = V_{234} = 12V$$
 $I_3 = V_3/R_3 = 12V/3\Omega = 4A$

What is I_1 ?

We know $I_1 = I_{1234} = 6 A$

NOTE:
$$I_2 = V_2/R_2 = 4/2 = 2 A$$

$$\rightarrow$$

$$I_1 = I_2 + I_3$$

Make Sense?