Those eyes watching the current loop scared me! Now I'm gonna have to sleep with the light on for at least 3 days. Thanks a lot Gary.

Magnetic moments are very difficult to understand, and the second checkpoint question is very confusing.

I feel like I should have a good grip on this new information because it is about similar topics as 211 but I am honestly very confused as to what is going on.

I'm confusing the direction of the magnetic field vector and the torque vector. Can you elaborate more on these in class?

The dipole moment is really confusing.

So many directions were pointed out to me that I got lost! What is the torque direction? Is that the same of the magnetic moment?

ahhh! so many things

How does one use the right hand rule when direction of current/particle and magnetic field are parallel?
Today’s Concept:

Torques
Last Time:

\[\vec{F} = q \vec{v} \times \vec{B} \]

This Time:

\[\vec{F} = q \sum_i \vec{v}_i \times \vec{B} \]

\[\vec{F} = qN \vec{v}_{avg} \times \vec{B} \]

\[N = nAL \]

\[I = qnA \vec{v}_{avg} \]

\[\vec{F} = I\vec{L} \times \vec{B} \]
A square loop of wire is carrying current in the counterclockwise direction. There is a horizontal uniform magnetic field pointing to the right.

\[\vec{F} = I \vec{L} \times \vec{B} \]

What is the force on section a-b of the loop?

A. zero
B. out of the page
C. into the page
A square loop of wire is carrying current in the counterclockwise direction. There is a horizontal uniform magnetic field pointing to the right.

\[\vec{F} = I \vec{L} \times \vec{B} \]

What is the force on section b-c of the loop?

A. zero
B. out of the page
C. into the page
A square loop of wire is carrying current in the counterclockwise direction. There is a horizontal uniform magnetic field pointing to the right.

\[\vec{F} = I \vec{L} \times \vec{B} \]

What is the force on section d-a of the loop?

A) Zero
B) Out of the page
C) Into the page
What is the direction of the net force on the loop?

A. Out of the page B. Into the page C. The net force on the loop is zero

“it is a closed loop (length vector is 0) so the net force is 0 F = ILxB = 0"
A square loop of wire is carrying current in the counterclockwise direction. There is a horizontal uniform magnetic field pointing to the right.

In which direction will the loop rotate?
(assume the z axis is out of the page)

A) Around the x axis
B) Around the y axis
C) Around the z axis
D) It will not rotate

Electricity & Magnetism Lecture 13, Slide 8
A square loop of wire is carrying current in the counterclockwise direction. There is a horizontal uniform magnetic field pointing to the right.

What is the direction of the net torque on the loop?

A. Up
B. Down
C. Out of the page
D. Into the page
E. The net torque is zero

\[\vec{\tau} = \vec{R} \times \vec{F} \]
EXPLAIN THE MAGNETIC DIPOLE... What IS IT?!?!?!?!?!

Area vector

Magnitude = Area
Direction uses R.H.R.

Magnetic Dipole moment

\[\vec{\mu} \equiv NIA \]
\[\vec{\tau} = \vec{\mu} \times \vec{B} \]

The torque always wants to line \(\mu \) up with \(B \)!

\[\vec{\tau} = \vec{\mu} \times \vec{B} \text{ turns } \mu \text{ toward } B \]

\[\vec{\tau} = \vec{\mu} \times \vec{B} \text{ turns } \mu \text{ toward } B \]
Practice with μ and τ

$\vec{\tau} = \vec{\mu} \times \vec{B}$

In this case μ is out of the page (using right hand rule)

$\vec{\tau} = \vec{\mu} \times \vec{B}$ is up (turns μ toward B)
Three different orientations of a magnetic dipole moment in a constant magnetic field are shown below. Which orientation results in the largest magnetic torque on the dipole?

\[\vec{\tau} = \vec{\mu} \times \vec{B} \]

Biggest when \(\vec{\mu} \perp \vec{B} \)
From Physics 211:

\[W = \int \tau d\theta \]

From Physics 212:

\[\tau = \mu \times \vec{B} = \mu B \sin(\theta) \]

\[W = \int \mu B \sin(\theta) d\theta = \mu B \cos(\theta) = \mu \cdot \vec{B} \]

\[\Delta U = -W \]

Define \(U = 0 \) at position of maximum torque

\[U \equiv -\mu \cdot \vec{B} \]
Which orientation has the most potential energy?

\[U = -\mu \cdot \vec{B} \]
Three different orientations of a magnetic dipole moment in a constant magnetic field are shown below. We want to rotate the dipole in the CCW direction.

First, consider rotating to position c. What are the signs of the work done by you and the work done by the field?

A) $W_{\text{you}} > 0$, $W_{\text{field}} > 0$
B) $W_{\text{you}} > 0$, $W_{\text{field}} < 0$
C) $W_{\text{you}} < 0$, $W_{\text{field}} > 0$
D) $W_{\text{you}} < 0$, $W_{\text{field}} < 0$

\[W_{\text{field}} = -\Delta U \]

- $\Delta U > 0$, so $W_{\text{field}} < 0$. W_{you} must be opposite W_{field}.
- Also, torque and displacement in opposite directions $\rightarrow W_{\text{field}} < 0$
Three different orientations of a magnetic dipole moment in a constant magnetic field are shown below. In order to rotate a horizontal magnetic dipole to the three positions shown, which one requires the most work done by the magnetic field?

\[
W_{\text{by_field}} = -\Delta U = U_i - U_f
\]

\[
U = -\mathbf{\mu} \cdot \mathbf{B}
\]

C): \[W_{\text{by_field}} = -\mu B - (-\mu B \cos \theta_c) = -\mu B(1 - \cos \theta_c) \]

B): \[W_{\text{by_field}} = -\mu B - 0 = -\mu B \]

A): \[W_{\text{by_field}} = -\mu B - (-\mu B \cos \phi_a) = -\mu B(1 + \cos \phi_a) \]
A square loop of side a lies in the x–z plane with current I as shown. The loop can rotate about x axis without friction. A uniform field B points along the $+z$ axis. Assume a, I, and B are known.

How much does the potential energy of the system change as the coil moves from its initial position to its final position.

Conceptual Analysis

A current loop may experience a torque in a constant magnetic field

$$\tau = \mu \times B$$

We can associate a potential energy with the orientation of loop

$$U = -\mu \cdot B$$

Strategic Analysis

Find μ

Calculate the change in potential energy from initial to final
A square loop of side a lies in the x–z plane with current I as shown. The loop can rotate about x axis without friction. A uniform field B points along the $+z$ axis. Assume a, I, and B are known.

What is the direction of the magnetic moment of this current loop in its initial position?

A) $+x$
B) $-x$
C) $+y$
D) $-y$
A square loop of side a lies in the x–z plane with current I as shown. The loop can rotate about x axis without friction. A uniform field B points along the $+z$ axis. Assume a, I, and B are known.

What is the direction of the torque on this current loop in the initial position?

A) $+x$
B) $-x$
C) $+y$
D) $-y$
A square loop of side a lies in the x–z plane with current I as shown. The loop can rotate about x axis without friction. A uniform field B points along the $+z$ axis. Assume a, I, and B are known.

$$U = -\vec{\mu} \cdot \vec{B}$$

What is the potential energy of the initial state?

A) $U_{\text{initial}} < 0$

B) $U_{\text{initial}} = 0$

C) $U_{\text{initial}} > 0$

$$\theta = 90^0 \implies \vec{\mu} \cdot \vec{B} = 0$$
A square loop of side a lies in the x–z plane with current I as shown. The loop can rotate about the x axis without friction. A uniform field B points along the $+z$ axis. Assume a, I, and B are known.

$$U = -\mathbf{\mu} \cdot \mathbf{B}$$

What is the potential energy of the final state?

A) $U_{\text{final}} < 0$

B) $U_{\text{final}} = 0$

C) $U_{\text{final}} > 0$

Check: μ moves away from B.
Energy must increase!

$\theta = 90^\circ$
$\mathbf{\mu} \cdot \mathbf{B} < 0$
$U = -\mathbf{\mu} \cdot \mathbf{B} > 0$

$\theta = 90^\circ + 30^\circ$
$\mathbf{\mu} \cdot \mathbf{B} < 0$
$U = -\mathbf{\mu} \cdot \mathbf{B} > 0$
A square loop of side a lies in the x–z plane with current I as shown. The loop can rotate about x axis without friction. A uniform field B points along the $+z$ axis. Assume a, I, and B are known.

\[U = -\mu \cdot \vec{B} \]

What is the potential energy of the final state?

A) $U = Ia^2B$

B) $U = \frac{\sqrt{3}}{2} Ia^2B$

C) $U = \frac{1}{2} Ia^2B$

\[
\cos(120^\circ) = -\frac{1}{2}
\]

$U = -\mu \cdot \vec{B} = -\mu B \cos(120^\circ) = \frac{1}{2} \mu B$

$\mu = Ia^2$

\[U = \frac{1}{2} Ia^2B \]