The slide regarding polarization was very confusing, a lot of complex vocabulary and quickly talking that was quite hard to follow. Please explain this further in class tomorrow. Also in the slide regarding the index of refraction, it stated that it is frequency dependent but I don't fully understand what it meant by this.

that last slide was a doozy @_@ I got the tldr, reflected light is somewhat horizontally polarized (completely if brewster's angle is hit), but can you please go over the derivation. reallllllly slowly. like reaaaallly really slowly :(

Can you go over Brewster's angle/polarization? I tried watching it twice and I'm still lost. The announcer went way too fast any there weren't many animations which help me follow along.

I understood everything very well till it got to the polarization slide, no clue how to tell what type of polarization it is, Gary did a bad job. sorry!

Please explain how the diagram on the slide about Brewster's angle was found. I saw it both in lab and the prelecture and am still confused.
Physics 212
Lecture 25

REFLECTION and REFRACTION
Let’s Start with a Summary:

Law of Reflection

\[\theta_1 = \theta_r \]

Incident Ray

Reflected Ray

Speed of Light in Matter

\[v < c \]

\[v = \frac{c}{n} \]

Refracted Ray

Snell’s Law

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

Critical Angle

\[\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right) \]

from \(n_2 \) to \(n_1 \)

Brewster’s Angle

\[\tan \theta_1 = \frac{n_2}{n_1} \]
The speed of light in a medium is slower than in empty space:

$$v = \frac{1}{\sqrt{\mu \varepsilon}} < \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Index of Refraction

$$n \equiv \frac{c}{v} = \frac{\sqrt{\mu \varepsilon}}{\sqrt{\mu_0 \varepsilon_0}} \approx \sqrt{\frac{\varepsilon}{\varepsilon_0}} \approx \sqrt{\kappa}$$

κ is the dielectric constant

Examples for Visible Light

\(n_{\text{air}} = 1.0\) \hspace{1cm} \(n_{\text{glass}} = 1.5\) \hspace{1cm} \(n_{\text{diamond}} = 2.4\)

$$v_{\text{medium}} = \frac{c}{n_{\text{medium}}}$$
2) A ray of light passes from air into water with an angle of incidence of 30 degrees.

Which of the following quantities does not change as the light enters the water. Mark all correct answers.

A wavelength
B frequency
C speed of propagation

What about the wave must be the same on either side?

Observers in both media must agree on the frequency of vibration of the molecules.
Reflection

\[t_{ad} = t_{bc} \]

Law of Reflection

\[\theta_i = \theta_r \]
Refraction: Snell’s Law

Snell's Law

\[n_2 \sin \theta_2 = n_1 \sin \theta_1 \]

\[\frac{D \sin \theta_2}{c/n_2} = \frac{D \sin \theta_1}{c/n_1} \]
Think of a Day at the Beach

What's the fastest path to the ball knowing you can run faster than you can swim?

This one is better

Not the quickest route...
Same Principle works for Light!

Time from A to B:

\[t = \frac{l_1}{v_1} + \frac{l_2}{v_2} = \frac{\sqrt{x_1^2 + y_1^2}}{v_1} + \frac{\sqrt{x_2^2 + y_2^2}}{v_2} \]

To find minimum time, differentiate \(t \) wrt \(x_1 \) and set \(\frac{dt}{dx_1} = 0 \)

\[\frac{dt}{dx_1} = \frac{x_1}{v_1 \sqrt{x_1^2 + y_1^2}} + \frac{x_2}{v_2 \sqrt{x_2^2 + y_2^2}} \frac{dx_2}{dx_1} \]

How is \(x_2 \) related to \(x_1 \)?

\[x_2 = D - x_1 \]

\[\frac{dx_2}{dx_1} = -1 \]

Setting \(\frac{dt}{dx_1} = 0 \)

\[\frac{x_1}{v_1 l_1} - \frac{x_2}{v_2 l_2} = 0 \]

\[\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2} \]

\[v = c/n \]

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]
The path of light is bent as it passes from medium 1 to medium 2.

Snell's Law:

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

\(n \) decreases \(\Rightarrow \) \(\theta \) increases

CheckPoint 2a

Compare the indexes of refraction in the two mediums.

A \(n_1 > n_2 \)
B \(n_1 = n_2 \)
C \(n_1 < n_2 \)
NOTE: $n_1 > n_2$ implies $\theta_2 > \theta_1$

BUT: θ_2 has max value $= 90^\circ$!

$\theta_1 > \theta_c \rightarrow$ Total Internal Reflection
A light ray travels in a medium with n_1 and completely reflects from the surface of a medium with n_2.

The critical angle depends on:
- A n_1 only
- B n_2 only
- C both n_1 and n_2

$$\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right)$$

θ_c clearly depends on both n_2 and n_1
Intensity

Case I: Glancing Incidence

$\theta_1 \sim 90^\circ$

Complete Reflection: $R \sim 1$

Case II: Normal Incidence

$\theta_1 = 0^\circ$

$$ R = \left(\frac{n_2 - n_1}{n_2 + n_1} \right)^2 $$

Anything looks like a mirror if light is just glancing off it.

If two materials have the same n then its hard to tell them apart.
Polarization

Snell’s Law: \(n_2 \sin \theta_2 = n_2 \cos \theta_1 = n_1 \sin \theta_1 \quad \Rightarrow \quad \tan \theta_1 = \frac{n_2}{n_1} \)

Example: Air to Glass

\(\theta_B = 33.7^\circ \)

\(\theta_1 + \theta_2 = 90^\circ \quad \Rightarrow \quad \sin \theta_2 = \sin(90^\circ - \theta_1) = \cos \theta_1 \)
A ray of light passes from air into water with an angle of incidence of 30 degrees.

Some of the light also reflects off the surface of the water. If the incident light is initially unpolarized, the reflected light will be

A. unpolarized
B. somewhat horizontally polarized
C. somewhat vertically polarized
A ball sits in the bottom of an otherwise empty tub at the front of the room.

Suppose N people sit high enough to see the ball.
A ball sits in the bottom of an otherwise empty tub at the front of the room. Suppose N people sit high enough to see the ball.

Suppose I fill the tub with water but the ball doesn’t move.

Will more or less people see the ball?

A) More people will see the ball
B) Same # will see the ball
C) Less people will see the ball

Snell’s Law: ray bent away from normal going from water to air
A light is shining at the bottom of a swimming pool (shown in yellow in the figure). A person is standing at the edge of the pool.

Can the person standing on the edge of the pool be prevented from seeing the light by total internal reflection at the water-air surface?

A. Yes B. No

The light would go out in all directions, so only some of it would be internally reflected. The person would see the light that escaped after being refracted.

Draw some rays
Example: Refraction at Water/Air Interface

Diver’s illusion

Diver sees all of horizon refracted into a 97° cone

$\theta_1 = 90^\circ \quad \sin \theta_2 = \frac{n_1}{n_2} \sin 90^\circ = \frac{n_1}{n_2} = \frac{1}{1.33} \quad \Rightarrow \quad \theta_2 = 48.5^\circ$
A meter stick lies at the bottom of a rectangular water tank of height 50 cm. You look into the tank at an angle of 45° relative to vertical along a line that skims the top edge of the tank.

What is the smallest number on the ruler that you can see?

Conceptual Analysis:
- Light is refracted at the surface of the water

Strategy:
- Determine the angle of refraction in the water and extrapolate this to the bottom of the tank.
A meter stick lies at the bottom of a rectangular water tank of height 50 cm. You look into the tank at an angle of 45° relative to vertical along a line that skims the top edge of the tank.

What is the smallest number on the ruler that you can see?

If you shine a laser into the tank at an angle of 45°, what is the refracted angle \(\theta_R \) in the water?

\[
\sin(\theta_R) = \frac{n_{\text{air}} \sin(45)}{n_{\text{water}}} = 0.532
\]

\[\theta_R = \sin^{-1}(0.532) = 32.1°\]

Exercise

Snell’s Law:

\[
n_{\text{air}} \sin(45) = n_{\text{water}} \sin(\theta_R)
\]
Exercise

A meter stick lies at the bottom of a rectangular water tank of height 50cm. You look into the tank at an angle of 45° relative to vertical along a line that skims the top edge of the tank.

What is the smallest number on the ruler that you can see?

What number on the ruler does the laser beam hit?

A) 31.4 cm
B) 37.6 cm
C) 44.1 cm

\[
\tan(\theta_R) = \frac{d}{50}
\]

\[
d = \tan(32.1°) \times 50\text{cm} = 31.4\text{cm}
\]
A meter stick lies at the bottom of a rectangular water tank of height 50 cm. You look into the tank at an angle of 45° relative to vertical along a line that skims the top edge of the tank.

If the tank were half full of water, what number would the laser hit?
(When full, it hit at 31.4 cm)

A) 25 cm B) 31.4 cm C) 32.0 cm D) 40.7 cm E) 44.2 cm
\[n_{\text{water}} = 1.33 \]

\[\theta_R = 32.1^\circ \]

\[d = 31.4 \text{ cm} \]

\[25 \text{ cm} + \left(\frac{31.4}{2} \right) \text{ cm} = 40.7 \text{ cm} \]
More Practice

A monochromatic ray enters a slab with $n_1 = 1.5$ at an angle θ_b as shown.

A) Total internal reflection at the top occurs for all angles θ_b, such that $\sin \theta_b < \frac{2}{3}$

B) Total internal reflection at the top occurs for all angles θ_b, such that $\sin \theta_b > \frac{2}{3}$

C) There is no angle θ_b ($0 < \theta_b < 90^\circ$) such that total internal reflection occurs at top.

Snell’s law:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$n \sin \theta$ is “conserved”

Ray exits to air with same angle as it entered!
A ray of light moves through a medium with index of refraction n_1 and is incident upon a second material (n_2) at angle θ_1 as shown. This ray is then totally reflected at the interface with a third material (n_3). Which statement must be true?

A) $n_3 < n_1$

B) $n_1 < n_3 \leq n_2$

C) $n_3 \geq n_2$

If $n_1 = n_3$

Want larger angle of refraction in n_3

$n_3 < n_1$