The circuit below consists of a battery with voltage, $V_b = 24$ V, two resistors, $R_1 = 20 \Omega$ and $R_2 = 30 \Omega$, an inductor, L = 22mH and two switches, S_1 and S_2 . S_1 and S_2 have been open for a long time. At t = 0, S_1 is closed.

1) What is the rate of change of current through the inductor immediately after switch S_1 is closed (e.g. t = 0)?

a. dI/dt = 1090 A/sb. dI/dt = 1.2 A/sc. dI/dt = 0.48 A/sd. dI/dt = 0.8 A/se. dI/dt = 0 A/s

2) What is the magnitude of the current through resistor R_1 at time t = 1.4 ms after switch S_1 is closed?

a. $|I_{RI}| = 0.864$ A b. $|I_{RI}| = 0.336$ A c. $|I_{RI}| = 1.02$ A

- 3) After S_1 has been closed for a long time, S_2 is closed, and then S_1 is opened. What is the magnitude of the voltage across resistor R_2 , immediately after switch S_1 is opened?
 - a. $|V_{R2}| = 24 \text{ V}$ b. $|V_{R2}| = 36 \text{ V}$ c. $|V_{R2}| = 16 \text{ V}$

A circuit is composed of a battery with voltage $V_b = 6$ V, two resistors $R_1 = 40 \Omega$ and $R_2 = 24 \Omega$, a capacitor C = 17 nF, an inductor L = 28 mH and a switch S. The switch has been open for a long time; at t = 0, it is closed.

4) What is the current through the battery at t = 0, just after the switch is closed?

a. $I_{b} = 0.0938 \text{ A}$ b. $I_{b} = 0.15 \text{ A}$ c. $I_{b} = 0.4 \text{ A}$ d. $I_{b} = 0 \text{ A}$ e. $I_{b} = 0.25 \text{ A}$

5) What is $V_{\rm C}$, the voltage across the capacitor, after the switch has been closed for a long time?

a. $V_{C} = 3.75 \text{ V}$ b. $V_{C} = 0 \text{ V}$ c. $V_{C} = 6 \text{ V}$

6) How much energy is stored in the inductor after the switch has been closed for a long time?

a. $U_L = 0.315 \text{ mJ}$ b. $U_L = 51 \text{ mJ}$ c. $U_L = 0.875 \text{ mJ}$ d. $U_L = 0 \text{ mJ}$ e. $U_L = 1.5 \text{ mJ}$

The circuit shown consists of a capacitor, $C = 4 \mu F$ that has an initial charge $Q_i = 24 \mu C$, an unknown inductor, *L*, and an open switch, S. At time t = 0 the switch is closed.

7) At t = 0, the total energy, E_{tot} , stored in the circuit is

- a. $E_{tot} = 0.072 \text{ mJ}$ b. $E_{tot} = 0.144 \text{ mJ}$ c. $E_{tot} = 0 \text{ mJ}$
- 8) At the instants in time when the current through the inductor is not changing (dI/dt = 0), what is V_C , the voltage across the capacitor?
 - a. $V_{\rm C} = 12 {\rm V}$ b. $V_{\rm C} = 0 {\rm V}$ c. $V_{\rm C} = 6 {\rm V}$
- 9) After the switch is closed, the frequency of the oscillations in the circuit is measured to be f = 40 kHz. At $t = 107 \mu$ s, what is the magnitude of the voltage across the inductor?
 - a. $V_L = 1.12 \text{ V}$ b. $V_L = 6 \text{ V}$ c. $V_L = 0 \text{ V}$ d. $V_L = 3 \text{ V}$ e. $V_L = 5.89 \text{ V}$

Consider the electrical AC circuit shown. It consists of a variable frequency AC generator providing a voltage $V(t) = 28 \sin(\omega t)$ Volts, a 10 Ω resistor, a 1.5 μ F capacitor, and a 2.4 mH inductor.

10) At resonance, which of the following components has the largest peak voltage across it?

- a. Generator
- b. Capacitor
- c. Resistor

11) What is the peak current through the circuit when the generator is running at $\omega = 2 \times 10^4$ rad/s?

- a. *I*_{max} = 0.583 A b. *I*_{max} = 1.58 A c. *I*_{max} = 2.8 A
- 12) What is the magnitude of the phase angle between the voltage across generator, and the current through the generator when the generator is running at $\omega = 2 \times 10^4$ rad/s?
 - a. $|\phi| = 16.7^{\circ}$ b. $|\phi| = 0^{\circ}$ c. $|\phi| = 55.7^{\circ}$
- 13) With the generator frequency still set to 2×10^4 rad/s, what is the first time after t=0, that the magnitude of the voltage across the resistor is a maximum?

a. $t = 7.85 \times 10^{-5} \text{ s}$ b. $t = 1.27 \times 10^{-4} \text{ s}$ c. $t = 4.86 \times 10^{-5} \text{ s}$

The electric field in an electromagnetic wave traveling through the vacuum is given by

$$\vec{E} = \frac{E_0}{\sqrt{2}} [\hat{x}\cos(kz + \omega t) + \hat{y}\sin(kz + \omega t)]$$
, where $\omega > 0$ and $k > 0$. The wavelength is $\lambda = 0.5$ cm.

14) What is the angular frequency ω of this wave?

a. $\omega = 1.88 \times 10^{11}$ rad/s b. $\omega = 3.77 \times 10^{11}$ rad/s c. $\omega = 1.33 \times 10^{11}$ rad/s

15) The electromagnetic wave is

a. unpolarized.b. linearly polarized.c. circularly polarized.

16) Which equation describes the magnetic field of this wave?

a.
$$\vec{B} = \frac{E_0}{\sqrt{2}c} [\hat{x}\sin(kz+\omega t) - \hat{y}\sin(kz+\omega t)]$$

b. $\vec{B} = \frac{E_0}{\sqrt{2}c} [\hat{x}\sin(kz+\omega t) + \hat{y}\cos(kz+\omega t)]$
c. $\vec{B} = \frac{E_0}{\sqrt{2}c} [\hat{x}\sin(kz+\omega t) - \hat{y}\cos(kz+\omega t)]$
d. $\vec{B} = \frac{E_0}{\sqrt{2}c} [\hat{x}\cos(kz+\omega t) - \hat{y}\sin(kz+\omega t)]$
e. $\vec{B} = \frac{E_0}{\sqrt{2}c} [\hat{x}\cos(kz+\omega t) + \hat{y}\sin(kz+\omega t)]$

17) Which of the following statements about the magnitude of the Poynting vector $|\vec{S}|$ for this wave is correct?

- a. $|\vec{S}|$ varies as a function of t but is independent of z.
- b. $|\vec{S}|$ varies as a function of both z and t.
- c. $|\vec{S}|$ is independent of both z and t.

A converging lens, made of glass with index of refraction n = 1.5, has a focal length f = 0.25 m. The lens is positioned at x = 0, as shown below.

- 18) At what position, x_0 , to the left of the lens should an object be placed so that the resulting image has a magnification M = -2.5 ?
 - a. $x_0 = -0.35$ m b. $x_0 = -0.25$ m c. $x_0 = -0.15$ m d. $x_0 = -0.1$ m e. $x_0 = -0.625$ m

19) The resulting image is

- a. real b. virtual
- 20) The resulting image is
 - a. upright
 - b. inverted
- 21) If the entire apparatus was placed inside an aquarium filled with water (n=1.3), in order to produce an image with the same magnification M = -2.5, the object should be moved
 - a. closer to the lens.
 - b. at the same location as when the system was in air.
 - c. further from the lens.

Consider a beam of unpolarized light with initial intensity I_{in} traveling in the +z direction that goes through an arrangement of two linear polarizers (LP1 and LP2) and a quarter wave plate (QWP) as shown in the figure. The surfaces of the polarizers and QWP are parallel to the xy plane. The transmission axes of the polarizers are at $\theta_1 = 45^\circ$ one way and $\theta_2 = 60^\circ$ the opposite way with respect to the x-axis, as shown in the diagram. The fast axis of the QWP is parallel to the x axis.

22) What is the polarization of the light immediately after it passes through the quarter wave plate (QWP)?

- a. linearly polarized at 60° relative to the x axis.
- b. left circularly polarized
- c. right circularly polarized
- d. linearly polarized at 45° relative to the *x* axis.
- e. unpolarized

23) What is the intensity of the transmitted light?

a. $I_{out} = 0.5*I_{in}$ b. $I_{out} = 0.25*I_{in}$ c. $I_{out} = I_{in}$ d. $I_{out} = 0.066*I_{in}$ e. $I_{out} = 0.033*I_{in}$

24) If the first polarizer is rotated such that $\theta_1 = 0^\circ$, what would happen to the intensity of the transmitted light I_{out} ?

- a. I out would decrease
- b. I out would not change
- c. I out would increase

A series RLC circuit is connected to a battery. The capacitor consists of two parallel, circular plates of radius $r_C = 0.045$ m. At time t = 0, the switch is closed.

- 25) **Immediately** after the switch is closed (e.g. *t*=0), which of the following correctly describes the magnitude of the magnetic field at points **A** and **B**
 - a. $|B_A| < |B_B|$
 - b. $|B_A| > |B_B|$
 - c. $|B_A| = |B_B|$
- 26) At the instant in time when the current through the resistor is 0.4 A, what is the magnitude of the magnetic field at point **B**, a distance r = 0.015 m from the center of the capacitor?
 - a. $|\mathbf{B}| = 0$ T b. $|\mathbf{B}| = 5.34 \times 10^{-6}$ T c. $|\mathbf{B}| = 1.98 \times 10^{-7}$ T d. $|\mathbf{B}| = 5.93 \times 10^{-7}$ T e. $|\mathbf{B}| = 1.78 \times 10^{-6}$ T

A light ray is incident from the air into a glass of index of refraction $n_2 = 1.5$ at an angle $\theta_1 = 30^\circ$. The angle between the reflected ray and the refracted ray is θ_2 as shown in the figure.

27) What is the value of θ_2 ?

a. $\theta_2 = 90.0^{\circ}$ b. $\theta_2 = 19.5^{\circ}$ c. $\theta_2 = 84.7^{\circ}$

28) if θ_1 decreases to 25°, how would θ_2 change?

- a. θ_2 would not change
- b. θ_2 would increase
- c. θ_2 would decrease