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213 Midterm coming up213 Midterm coming up……

Monday Nov 12 @ 7 pm (conflict exam @ 5:15pm)

Covers:

Lectures 1-12 (not including thermal radiation)

HW 1-4

Discussion 1-4

Labs 1-2

Review Session 

Sunday Nov 11, 3-5 PM, 141 Loomis

HW 4 is not due until Thursday, Nov 15 at 8 am, but some of the 
problems are relevant for the exam.
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Lecture 10
The Boltzmann Distribution

• Concept of a thermal reservoir

• The Boltzmann distribution

• Paramagnetic Spins – MRI 

• Supplement: Proof of equipartition, showing its limits

Reading for this Lecture:

Elements Ch 8

Reading for Lecture 11:

Elements Ch 9
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Some Questions
We’d Like to Answer

These questions involve the interaction between 
a small system (atom or molecule) and 
a much larger system (the environment).
This is a basic problem in statistical mechanics.

What is the range 

of kinetic energies 

of an O2 molecule?

Under what conditions 

does O2 break up into 

two O atoms?

What is the probability 

that a DNA molecule will 

unfold and replicate?

What is the capacity of a 

myoglobin molecule to carry 

oxygen to the muscles?

What is the vapor pressure 

of a solid or liquid?

When do molecular vibrations 

become important?

Vitruvian Man, 1490, by Leonardo da Vinci
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Averages from Probabilities

IF:

1 You could list every quantum state of some small system.

(this is realistic for small objects, e.g., oscillators or atoms)

2 And you knew the properties of each state 

(e.g., energy, magnetic moment, optical density, etc.)

3 And you knew the probability of each state (P1, P2, ...PnB)

THEN:

You could calculate the average energy, magnetic moment, optical density, 
etc. for each part . For example, <E> = P1 E1 + P2 E2 + ... Pn En B

Now if you have a big system, made up of simple little parts,  
to get  <E>, <m>, etc. for the big system, just add all the parts!

We can figure out how things behave, starting from scratch.

The key step is  3: The Boltzmann factor tells us the probabilities.
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Concept of a Thermal Reservoir

We will be considering situations like this:

The two systems can exchange energy, volume, particles, etc.

If the large system is much larger than the small one, then 

its temperature will not be significantly affected by the interaction.

We define a thermal reservoir to be a system 

that is large enough so that its T does not change

when interacting with the small system.

The reservoir doesn’t have to be very large, just a lot larger than the small system.

A large system

A small

system Note: The systems do not have to be collections 

of oscillators (with equally spaced energy levels).  

We only assume that to simplify the math.
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Thermal Reservoir

Let’s start with a reservoir that isn’t very large.

That makes the problem easier to solve.  

Consider one oscillator in thermal contact with a system of three oscillators:

Total energy: U = En + UR

ΩR = # reservoir microstates 

Question: What is the probability Pn that the small system has energy En = nε?

Answer:   The probability is proportional to the corresponding ΩR.

Key point:  Ωn = 1 for every n, so  Ωtot = ΩnΩR = ΩR. 

The probability calculation is dominated 

by the behavior of the reservoir.

En Ek + El + Em =  UR = energy of reservoir 

Small            Reservoir 

system

4ε

3ε

2ε

1ε

0

Pn ∝ ΩR
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One Oscillator Exchanging 
with Three Oscillators

Probability decreases with En because # states of the large system 

decreases as UR = Utot - En goes down.

N = 3

En UR = U - En ΩR(UR ) Pn = ΩR / Σ ΩR

0 4ε (q = 4) 15 15/35  =  0.43

ε 3ε 10 10/35  =  0.29

2ε 2ε 6 6/35  =  0.17

3ε ε 3 3/35  =  0.09

4ε  0 1 1/35  =  0.03

35 =  total # states for                                         

combined system

= Σ ΩR

+ −
Ω =

−

+ −
= =

−

∑
( 1)!

!( 1)!

(4 4 1)!
35

4!(4 1)!

tot
R

tot

q N

q N

Suppose

U = 4ε
( )

( 1)!

! 1 !
R

q N

q N

+ −
Ω =

−

Pn

0.5

En

0     1    2     3     4   ×ε

Why is zero 

energy the most 

probable?

( )
( )

( )
R

n R

Rn

n
P n

n
′

Ω
= ∝ Ω

′Ω∑
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The Boltzmann Factor

To calculate Pn we only need to know:

• The energy, En of the small system,
• The temperature, TR, of the reservoir.

Let’s do it:

Because σ = ln(Ω).

Define σ0 The entropy when En = 0 (i.e., when UR = Utot).

Calculate σ when En ≠ 0 using a Taylor expansion (1st derivative only):

Remember the definition of temperature: 

Therefore and

A large system

Temperature = TR

A small

system

( ) ( ) 00 R
n n n

n R

d
E E E

E dU

σσ
σ σ σ

∂
= + = −

∂

nP eσ∝ Ω =

1R

R RU kT

σ∂
=

∂

0 n

R

E

kT
σ σ= − exp n

n

R

E
P

kT

 
∝ − 

 

This is the Boltzmann factor.

It tells us the probability that 

a small system is in a state 

that has energy En.

It is very important !!
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Normalization of the Probability

We now know that

Let: 

We can determine the proportionality constant,

by requiring that the total probability equal one:

Then

Z is called the “partition function”.

−∝ /nE kT

nP e

/ n

n

E kTZ e−≡ ∑

/

 
nE kT

n

e
P

Z

−

=

−
−

= = =
∑

∑ ∑
/

/

 1

n

n

E kT

E kT

n
n

n n

e
e

P
Z Z

This is a sum over all 

states of the system.
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Example: Boltzmann Factor

A particular molecule has three states, with energy spacing ε = 10-20 J, as 

shown; the molecule is in contact with the environment (reservoir), which 

has a temperature of 1000 K.

1) What is P1, the probability that the molecule is in the middle energy state? 

2) What is P2, the probability that it is in the highest energy state?

E
ε
ε

E2

E1

Eo



Lecture 10, p 11

Solution

A particular molecule has three states, with energy spacing ε = 10-20 J, as 

shown; the molecule is in contact with the environment (reservoir), which 

has a temperature of 1000 K.

1) What is P1, the probability that the molecule is in the middle energy state? 

2) What is P2, the probability that it is in the highest energy state?

E
ε
ε

E2

E1

Eo

1 / /

1 / 0 / / 2 /

0.725

0.725 1.45

0.485
0.282

1 1 0.485 0.235

n

E kT kT

E kT kT kT kT

e e
P

e e ee

e

e e

ε

ε ε

− −

− − − −

−

− −

= =
+ +

= = =
+ + + +

∑ -20

23 3

10  J
= 0.725

1.38 10 10  JkT

ε
− =

× ⋅

You can always pick E=0

at your convenience.
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Solution

A particular molecule has three states, with energy spacing ε = 10-20 J, as 

shown; the molecule is in contact with the environment (reservoir), which 

has a temperature of 1000 K.

1) What is P1, the probability that the molecule is in the middle energy state? 

2) What is P2, the probability that it is in the highest energy state?

E
ε
ε

E2

E1

Eo

1 / /

1 / 0 / / 2 /

0.725

0.725 1.45

0.485
0.282

1 1 0.485 0.235

n

E kT kT

E kT kT kT kT

e e
P

e e ee

e

e e

ε

ε ε

− −

− − − −

−

− −

= =
+ +

= = =
+ + + +

∑ -20

23 3

10  J
= 0.725

1.38 10 10  JkT

ε
− =

× ⋅

You can always pick E=0

at your convenience.

kT/EkT/EkT/E

kT/E

2
210

2

eee

e
P

−−−

−

++
=

235.0485.01

235.0

++
= 137.0=
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Act 1

1) What is P0 when T → 0?
a) 0 b) 1/3 c) 1

2) What is P2 as T → ∞?
a) 0 b) 1/3 c) 1 

3) What happens to P2 as we decrease T?

a) decreases b) increases c) decreases, then increases 

A particular molecule has three states, with 

energy spacing ε = 10-20 J, as shown.  The 

molecule is in contact with the environment 

(reservoir) at temperature T.  

E

ε

ε

E2

E1

Eo
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Solution

1) What is P0 when T → 0?
a) 0 b) 1/3 c) 1

2) What is P2 as T → ∞?
a) 0 b) 1/3 c) 1 

3) What happens to P2 as we decrease T?

a) decreases b) increases c) decreases, then increases 

A particular molecule has three states, with 

energy spacing ε = 10-20 J, as shown.  The 

molecule is in contact with the environment 

(reservoir) at temperature T.  

E

ε

ε

E2

E1

Eo

P1 and P2 both → 0, because 1/T → ∞, so P0 must → 1. 
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Solution

1) What is P0 when T → 0?
a) 0 b) 1/3 c) 1

2) What is P2 as T → ∞?
a) 0 b) 1/3 c) 1 

3) What happens to P2 as we decrease T?

a) decreases b) increases c) decreases, then increases 

A particular molecule has three states, with 

energy spacing ε = 10-20 J, as shown.  The 

molecule is in contact with the environment 

(reservoir) at temperature T.  

E

ε

ε

E2

E1

Eo

P1 and P2 both → 0, because 1/T → ∞, so P0 must → 1. 

Now,1/T → 0, so all the probabilities become equal. 
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Solution

1) What is P0 when T → 0?
a) 0 b) 1/3 c) 1

2) What is P2 as T → ∞?
a) 0 b) 1/3 c) 1 

3) What happens to P2 as we decrease T?

a) decreases b) increases c) decreases, then increases 

A particular molecule has three states, with 

energy spacing ε = 10-20 J, as shown.  The 

molecule is in contact with the environment 

(reservoir) at temperature T.  

E

ε

ε

E2

E1

Eo

P1 and P2 both → 0, because 1/T → ∞, so P0 must → 1. 

Now,1/T → 0, so all the probabilities become equal. 

As T decreases, there is less chance to find the molecule with energy 

E2, because that’s the highest E. The ratio of its probability to that of 

every other state always decreases as T increases.
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You often come across a system that is “degenerate”, which means 

that more than one state has the same energy. The Boltzmann 

calculation still applies – just make sure to sum over all states. In this 

case, you simply need to count the number of degenerate states. 

For example, three states have energy E:

The Boltzmann factor tells us the probability per state!!

The probability that the system has a particular energy E depends on 

the number of states at that energy: 

How to apply the Boltzmann Factor 
if there are degenerate states

0 /

/

/

P(0) / 1/

P(E 3

3

) /

1

kT

E kT

E kT

e Z Z

e Z

Z e

−

−

−

= =

=

= +

3 states

1 state

E

0

Three states have the same 

Boltzmann factor.

−

−=
∑

/

/

n

n

E kT

n
n E kT

n

n

d e
P

d e

dn = degeneracy of state n

This is the probability 

of a particular energy.
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Each spin has potential energy En = -µ•B = ±µB (a result from P212).

The probability Pn that a spin will have energy En is given by the 

Boltzmann distribution (which gives the probability that the spin is 

up or down):

→→

Example: Paramagnetism
A System of Independent Magnetic Spins

In a magnetic field, spins can only point parallel or anti-parallel 

to the field (a result of quantum mechanics).

B

−= / /nE kT

nP e Z

N spins, each with magnetic moment µ, in 

contact with a thermal bath at temperature T.

→
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MRI exploits the paramagnetic behavior of the protons in your body.

What happens when you place your body in a magnetic field?

The protons (hydrogen nuclei) align their magnetic moments (spins) with 
the magnetic field.  This is the basis of Magnetic Resonance Imaging

Consider the small ‘system’ to be a single proton spin; 
the ‘reservoir’ is your body.  Here are the energy levels 

of the proton:

We are interested in the net magnetic moment, M, 
of the N protons in the magnetic field:  
M = µm, where m ≡ Nup-Ndown, the “spin excess”.

Application: Magnetic Resonance Imaging (MRI)

2003 Nobel Prize in Medicine  

UIUC’s Paul Lauterbur

BEdown µ+=

BEup µ−=
B
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/ /B kT B kTZ e eµ µ−= +

( )

( )

/ /

/ /

M ( )

tanh /

up down up down

B kT B kT

B kT B kT

N N N P P

e e
N

e e

N B kT

µ µ

µ µ

µ µ

µ

µ µ

−

−

= − = −

−
=

+
=

Magnetic Resonance Imaging (2)

Solve this problem using Boltzmann factors.

The partition function, Z, is the sum of the Boltzmann factors:

The total magnetic moment is:

( )exp /
down down

B kT
E B P

Z

µ
µ

−
= + =

( )exp /
up up

B kT
E B P

Z

µ
µ

+
= − =

B

Let’s plot this function...
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At sufficiently high temperatures, the ratio x ≡ µB / kT << 1. 
Using tanh(x) ~ x for small x, 
the total magnetic moment of the spin system is:

Curie’s Law 

2N B B
M

kT T

µ
≈ ∝

T

M

B/T

µN

-1 +1 µB/kT

tanh( / )M N B kTµ µ= ⋅

M

High-B or low-T:

Most spins lined up

“Saturation”
Low-B or high-T:

Few spins lined up

Linear response

Magnetic Resonance Imaging (3)

−µN
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ACT 2

Consider a collection of N spins in magnetic field.

1) What is the entropy of these N spins as T→→→→ ∞?

a) 0 b) Nln(2) c) 2ln(N)

2) What is the entropy as T →→→→ 0 ?

a) 0 b) Nln(2) c) 2ln(N)
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Solution

Consider a collection of N spins in magnetic field.

1) What is the entropy of these N spins as T→→→→ ∞?

a) 0 b) Nln(2) c) 2ln(N)

2) What is the entropy as T →→→→ 0 ?

a) 0 b) Nln(2) c) 2ln(N)

At high temperature, each spin is as likely to point up as down.

That is, each spin as two possible equally likely microstates.
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Solution

Consider a collection of N spins in magnetic field.

1) What is the entropy of these N spins as T→→→→ ∞?

a) 0 b) Nln(2) c) 2ln(N)

2) What is the entropy as T →→→→ 0 ?

a) 0 b) Nln(2) c) 2ln(N)

At high temperature, each spin is as likely to point up as down.

That is, each spin as two possible equally likely microstates.

Every spin is stuck in the lowest-energy state, aligned with the field.

This is a general result:  For any realistic system (even a big one) 

there are only one or two ground states.  Therefore:

As T → 0:  S → 0 “The third law” of thermodynamics
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Summary: Collection of Spins

We used the Boltzmann factor (and remembering that the sum of the 

probabilities is always 1) to tell us the probabilities of each of the two energy 

states of a single magnetic moment in a magnetic field.

In a collection, the average number pointing up and down is just N times the 

probabilities:

Nup = NPup, and Ndown = NPdown

Using these averages, we can calculate macroscopic properties (see 

Appendix):

• total magnetic moment, M

• internal energy, U

• heat capacity, CB

• entropy, S

/ /

/ / / /
;

B kT B kT

up downB kT B kT B kT B kT

e e
P P

e e e e

µ µ

µ µ µ µ

−

− −
= =

+ +
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Two-state Systems in General 

2

1

E
kT

E
kT

e
P

e

−∆

−∆=
+

This behavior will be exactly the same for every 

“two-state system” with the same ∆E. 

1

1

1
E
kT

P
e

−∆=
+ P1

P2

kT/∆E

1 2 3 4 50
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a

b
ili

ti
e
s

Consider a two-state system with an energy 

difference ∆E between the two states.

How do the occupation probabilities 

of the states vary with T?

The low energy state is preferentially 

occupied at low T, but the states 

approach equal occupancy at high T. 

∆E

E2

E1
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Next Time

Applying Boltzmann Statistics

• Polymers

• Simple Harmonic Oscillators:

CV of molecules – for real! 

When equipartition fails

• Planck Distribution of Electromagnetic Radiation
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Supplement: Internal Energy of
a Collection of Spins

Recall how to calculate the internal energy U:

U = NuEu +NdEd = -(Nu-Nd)µB

= -NµB tanh(µB/kT)

What does this look like as a function of T?

Edown

Eup

B
�

Low T (kT << µB):

Boltzmann factor ~ 0. 

All spins are stuck in low energy state.

U = NEup = -µBN, independent of T

High T (kT >> µB):
Boltzmann factor approaches 1.

Almost equal numbers in the up and down states.

U ≈ (N/2)(Eup+Edown) = 0, independent of T

2 4 6 8 kT/µB
U/µBN

0

-0.5

-1.0

Eup = -Edown = -µB
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( )
2

2sech /B

B const

U B
C Nk B kT

T kT

µ
µ

=

∂   = =   ∂   

We now have U(T), for fixed B, so we can get the heat capacity, CB (at 
constant B), by taking  ∂U/∂T.

For kT << µB, CB vanishes, because all are stuck in “ground state”.

For kT >> µB, C vanishes, because the 
probabilities of the two states each 
approach 0.5, and cease to depend on T.

A collection of 2-state spins does not behave anything like an ideal gas.

1 2 3  kT/µB

CB/kN

Supplement: Heat Capacity of
a Collection of Spins
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Given CB, We can calculate S at any T.

At T = ∞, each spin has two equally likely microstates.

Therefore, the system has Ω = 2N ⇒ σ = Nln2, and S = Nkln(2).

At fixed B, dS = CBdT/T.

This is just like fixed V, where dS=CvdT/T.  If B is not kept constant, 

some of the energy goes into other forms (work is done).

This is a bit messy.  Here’s the graph:

It has the behavior we expect:

As T → 0, S(T) → 0.  

At T = 0, there is only one available

microstate (all spins up).

( ) ( ) ln 2cosh tanh
T

BC B B B
S T S dT Nk

T kT kT kT

µ µ µ

∞

     = ∞ + = −     
     

∫

Supplement: Entropy of
a Collection of Spins

Integrals of hyperbolic functions

are similar to integrals of trig

functions.

S/Nk

1 2 3    kT/µB

ln(2)


