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Lecture 13
Heat Engines

• Thermodynamic processes and entropy

• Thermodynamic cycles

• Extracting work from heat
- How do we define engine efficiency?

- Carnot cycle: the best possible efficiency

Reading for Lecture 14:

Elements Ch 10

Reading for this Lecture:

Elements Ch 4D-F
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Isochoric (constant volume)

A Review of Some Thermodynamic 
Processes of an Ideal Gas
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We will assume ideal gases in our treatment of heat engines, 

because that simplifies the calculations.
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Closed Thermodynamic Cycles
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A closed cycle is one in which the system returns to the initial state.

(same p, V, and T)  For example:

• U is a state function.  Therefore:
• The net work is the enclosed area.
• Energy is conserved (1st Law):  

Closed cycles will form the basis of our heat engine discussion.
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∫� This is the reason that neither W nor 

Q is a state function.  It makes no 

sense to talk about a state having a 

certain amount of W.

Though of course we could use any curves to make a 

closed cycle, here we will consider

isochoric, isobaric, isothermal, and adiabatic processes.
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Introduction to Heat Engines

One of the primary applications of thermodynamics is to Turn heat into work.

The standard heat engine works on a cyclic process:

1) extract heat from a hot reservoir, 

2) perform work, using some of the extracted heat, 

3) dump unused heat into a cold reservoir (often the environment).

4) repeat over and over.   We represent this process with a diagram:

A “reservoir” is a large body whose 

temperature doesn’t change when it 

absorbs or gives up heat

Wby

Hot reservoir at Th

Engine:

Qh

Cold reservoir at Tc

Qc

Energy is conserved: Qh = Qc + Wby

For heat engines we will define Qh , 

Qc , and Wby as positive. 
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A Simple Heat Engine:

the Stirling Cycle

Two reservoirs: Th and Tc.

Four processes: Two isotherms and two isochors

The net work during one cycle: The area of the “parallelogram”.
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The Stirling Cycle (2)

Th

Tc

3) Isochoric
Gas temperature decreases 

at constant volume (piston can’t move)

gas

Qc3

Th

Tc

gas

4) Isothermal
Gas is compressed at constant Tc

W4

Qc4

Th

Tc

gas

1) Isochoric
Gas temperature increases 

at constant volume (piston can’t move)

Qh1
Th

Tc

gas

2) Isothermal
Gas expands at constant Th

W2

Qh2

The cycle goes            

around like this.

We don’t describe the 

mechanical parts that move 

the gas cylinder back and 

forth between 

the reservoirs.
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How Does this Engine Do Work?

Look at the two isothermal processes (2 and 4) on the previous slide

Process 2: expanding gas does W2 on the piston, as it expands  from Va to Vb.

Process 4: contracting gas is done W4 by the piston, as it contracts from Vb to Va.

If W2 > W4, the net work is positive.  

This is true, because the contracting gas is colder (⇒lower pressure).

During one cycle:

• The hot reservoir has lost some energy (Qh=Qh1+Qh2).
• The cold reservoir has gained some energy (Qc=Qc3+Qc4).
• The engine (the gas cylinder) has neither gained nor lost energy.

The energy to do work comes from the hot reservoir, not from the engine itself.

The net work done by the engine is:

Wby = W2 - W4 = Qh - Qc= Qh2 - Qc4

Not all of the energy taken from the hot reservoir becomes useful work.  

Some is lost into the cold reservoir.  We would like to make Qc as small as possible.
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Act 1

On the last slide, why did we write Qh - Qc= Qh2 - Qc4?
What happened to Qh1 and Qc3? (since Qh = Qh1 + Qh2, and Qc = Qc1 + Qc2)

a) They both = 0.

b) They are not = 0, but they cancel.

c) They average to zero over many cycles.
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Solution

They cancel, because the amount of heat needed to raise 

the temperature from Tc to Th at constant volume equals 

the amount of heat needed to lower the temperature from 

Th to Tc at constant volume*, even though Va ≠ Vb.

*Note:  This is only valid for ideal gases.

CV is only independent of V for an ideal gas.

On the last slide, why did we write Qh - Qc= Qh2 - Qc4?
What happened to Qh1 and Qc3? (since Qh = Qh1 + Qh2, and Qc = Qc1 + Qc2)

a) They both = 0.

b) They are not = 0, but they cancel.

c) They average to zero over many cycles.
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Heat Engine Efficiency

What’s the best we can do?

The Second Law will tell us.

1
by h c c

h h h

W Q Q Q

Q Q Q
ε

−
≡ = = −

work done by the engine results

heat extracted from reservoir cost
ε ≡ =

We pay for the heat input, QH, so:

Define the efficiency

Valid for all heat engines.
(Conservation of energy)

Cartoon picture of a heat engine:

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

Wby

Remember:  

We define Qh and Qc as positive.  

The arrows define direction of flow.

Engine
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Review

Entropy in Macroscopic Systems

Traditional thermodynamic entropy: S = k lnΩ = kσ
We want to calculate S from macrostate information (p, V, T, U, N, etc.)
Start with the definition of temperature in terms of entropy:

The entropy changes when T changes: (We’re keeping V and N fixed.)

If CV is constant:
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Entropy in Quasi-static Heat Flow

When V is constant: dS ≡ dU/T = dQ/T ⇐ W = 0, so dU = dQ

In fact, dS = dQ/T during any reversible (quasi-static) process, 
even if V changes.

The reason: In a reversible process, Stot (system plus environment) 
doesn’t change:

0 sys E

E
sys

sys

dS dS

dU
dS

T

dQ
dS

T

= +

= +

= −

for any reversible process, o r 
f in a l

in it

dQ dQ
dS S

T T
= ∆ = ∫

∆Stot = 0 if process is reversible.

The reservoir is supplying (or absorbing) heat.

The reservoir’s energy gain is the system’s heat loss.

That’s how they interact.
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∆S in Isothermal Processes
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Suppose V & p change but T doesn’t.

Work is done (dWby = pdV).  
Heat must enter to keep T constant: dQ = dU+dWby.

So:

Special case, ideal gas:

For an ideal gas, if dT = 0, then dU = 0.
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Remember: This holds for quasi-static processes, in which

the system remains near thermal equilibrium at all times.
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Q = 0 (definition of an adiabatic process)

V and T both change as the applied pressure changes.

For example, if p increases (compress the system):

• V decreases, and the associated S also decreases.

• T increases, and the associated S also increases.

These two effects must exactly cancel !! 

Why?  Because:

• This is a reversible process, so Stot = 0.

• No other entropy is changing. 

(Q = 0, and Wby just moves the piston.)

So, in a quasi-static adiabatic process, ∆S = 0.

Note: We did not assume that the system is an

ideal gas.  This is a general result.

Quasi-static Adiabatic Processes

system

Insulated walls

p

V

1

2

TH

TC
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Heat Engine Efficiency

What’s the best we can do?

The Second Law will tell us.

1
by h c c

h h h

W Q Q Q

Q Q Q
ε

−
≡ = = −

work done by the engine results

heat extracted from reservoir cost
ε ≡ =

We pay for the heat input, QH, so:

Define the efficiency

Valid for all heat engines.
(Conservation of energy)

Cartoon picture of a heat engine:

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

Wby

Remember:  

We define Qh and Qc as positive.  

The arrows define direction of flow.

Engine
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The 2nd Law Sets the Maximum Efficiency (1)

0totS∆ ≥

How to calculate ∆Stot?

Over one cycle:

∆Stot = ∆Sengine + ∆Shot +∆Scold

Remember: 
Qh is the heat taken from the hot reservoir, so ∆Shot = -Qh/Th.

Qc is the heat added to the cold reservoir, so ∆Scold = +Qc/Tc.

0CH
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H C
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Q T
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From the definition of T

2nd Law

Qc cannot be zero.

Some energy is always lost.
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nd
from the 2  Law
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The 2nd Law Sets the Maximum Efficiency (2)

This is a universal law !! (equivalent to the 2nd law)

It is valid for any procedure that converts thermal energy into work.

We did not assume any special properties (e.g., ideal gas) 

of the material in the derivation.

The maximum possible efficiency, εCarnot = 1 - Tc/Th, is called the Carnot efficiency.
The statement that heat engines have a maximum efficiency was the first 

expression of the 2nd law, by Sadi Carnot in 1824.
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Carnot

273 K
1 1 0.27

373 K
C

H

T

T
ε = − = − =

How Efficient Can an Engine be?

Consider an engine that uses steam (Th = 100° C) as the hot reservoir

and ice (Tc = 0° C) as the cold reservoir.  How efficient can this engine be?

The Carnot efficiency is 

Therefore, an engine that operates between these two temperatures

can, at best, turn only 27% of the steam’s heat energy into useful work.

Question: How might we design an engine that has higher efficiency?

Answer: By increasing Th. (That’s more practical than lowering Tc.)

Electrical power plants and race cars obtain better 

performance by operating at a much higher Th.
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When Is ε Less than εCarnot?
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⇒

Lesson: Avoid irreversible processes.

(ones that increase Stot).

• direct heat flow from hot to cold
• free expansion (far from equilibrium)
• sliding friction

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine

We can write the efficiency loss in terms of 

the change of total entropy:

εCarnot
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Entropy-increasing processes are irreversible,

because the reverse processes would reduce entropy.

Examples:

• Free-expansion (actually, any particle flow between regions of different density)
• Heat flow between two systems with different temperatures. 

Irreversible Processes

Consider the four processes of interest here:

Isothermal: Heat flow but no T difference. Reversible

Adiabatic: Q = 0.  No heat flow at all. Reversible

Isochoric & Isobaric: Heat flow between different T’s. Irreversible
(Assuming that there are only two reservoirs.)

reversible reversible irreversible irreversible
V

p isotherm adiabat

V

p
isochor

V

p isobar

V

p
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Act 2: Stirling Efficiency

Will our Stirling engine achieve Carnot efficiency?

a) Yes b) No

V

Tc

Th

Va Vb

p

1

2

3

4
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Solution

Will our Stirling engine achieve Carnot efficiency?

a) Yes b) No

V

Tc

Th

Va Vb

p

1

2

3

4

Processes 1 and 3 are irreversible.

(isochoric heating and cooling)

1: Cold gas touches hot reservoir.

3: Hot gas touches cold reservoir.
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How to Achieve Carnot Efficiency

V

Tc

Th

Vb Va VcVd

p

1

2

3

4

To achieve Carnot efficiency, we must replace the isochors (irreversible) 

with reversible processes. Let’s use adiabatic processes, as shown:

Processes 1 and 3 are now adiabatic.

Processes 2 and 4 are still isothermal.

This cycle is reversible, which means:

Stot remains constant: ⇒ ε = εCarnot.

This thermal cycle is called the Carnot cycle,

and an engine that implements it is called a 

Carnot heat engine.
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Total work done by the gas is the sum of steps 2 and 4:

Example: Efficiency of Stirling Cycle
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We need a temperature

difference if we want to 

get work out of the engine.
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Heat extracted from the hot reservoir, exhausted to cold reservoir:
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Solution
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V
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1 2

3
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Area enclosed:

 ∫= dVpWby
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Let’s put in some numbers:

Vb = 2Va 
α = 3/2   (monatomic gas)
Th = 373K (boiling water)

Tc = 273K (ice water)

For comparison:

εcarnot = 1 – 273/373 = 26.8%

Solution
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Heat Engine Summary

1 c

h

Q

Q
ε = −For all cycles:

For the Carnot 

cycle:

Carnot (best)

efficiency:

Carnot engines are an idealization - impossible to realize.

They require very slow processes, and perfect insulation. 

When there’s a net entropy increase, the efficiency is reduced:

Carno t
C to t

H

T S

Q
ε ε

∆
= −

Some energy is dumped 

into the cold reservoir.

c c

h h

Q T

Q T
=

Carnot 1 c

h

T

T
ε = −

Qc cannot be reduced to zero.

Only for reversible cycles.
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Next Time

Heat Pumps

Refrigerators,

Available Work and Free Energy


