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Lecture 14
Heat Pumps, Refrigerators, and 

Bricks!

• Pumping Heat: Heat pumps and Refrigerators

• Available Work and Free Energy

• Work from Hot and Cold Bricks

Reading for this Lecture:

Elements Ch 10

Reading for Lecture 16:

Elements Ch 11 
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Run the Engine in Reverse

The Carnot cycle is reversible (each step is reversible):

When the engine runs in reverse:

Heat is transferred from cold to hot by action of work on the engine.

Note that heat never flows spontaneously from cold to hot; 

the cold gas is being heated by adiabatic compression (process 3).

Qc / Qh = Tc / Th is still true. (Note:  Qh, Qc, and W are still positive!) 

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine

V

Tc

Th

Vb Va Vc Vd

p
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2
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4

Reverse all 

the arrows

Qh

Qc
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Refrigerators and Heat Pumps

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine

Refrigerators and heat pumps are heat engines running in reverse.

How do we measure their performance?

It depends on what you want to accomplish.

Refrigerator:
We want to keep the food cold (Qc).  

We pay for W (the electric motor in the fridge).

So, the coefficient of performance, K is:

Heat pump:
We want to keep the house warm (Qh).  

We pay for W (the electric motor in the garden).

The coefficient of performance, K is:

c c c

h c h c

Q Q T
K

W Q Q T T
≡ = =

− −

h h h

h c h c

Q Q T
K

W Q Q T T
≡ = =

− −

It’s not called “efficiency”.
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Helpful Hints in Dealing with 
Engines and Fridges

Sketch the process (see figures below).  

Define Qh and Qc and Wby (or Won) as positive and show directions of flow.  

Determine which Q is given. 

Write the First Law of Thermodynamics (FLT).

We considered three configurations of Carnot cycles:

Qh

Wby

Th

Tc
Qc

Engine:

We pay for Qh, 

we want Wby.

Wby = Qh - Qc = εQh

Carnot: ε = 1 - Tc/Th

Qleak= QC

Qh

Won

Th

Tc
Qc

Refrigerator:

We pay for Won, 

we want Qc.

Qc = Qh - Won = ΚWon

Carnot: Κ = Tc/(Th - Tc)

Qleak= QhQh

Won

Th

Tc
Qc

Heat pump:

We pay for Won, 

we want Qh.

Qh = Qc + Won = ΚWon

Carnot: Κ = Th/(Th - Tc)

These both have large Κ when Th - Tc is small.
This has large ε
when Th - Tc is large.
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There is a 70 W heat leak (the insulation is not 

perfect) from a room at temperature 22°C into an 

ideal refrigerator.  How much electrical power is 

needed to keep the refrigerator at -10° C?  

Assume Carnot performance.

Act 1: Refrigerator

a) < 70 W

b) = 70 W

c) > 70 W
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Act 1: Refrigerator

There is a 70 W heat leak (the insulation is not perfect) from a room at 

temperature 22° C into an ideal refrigerator.  How much electrical 

power is needed to keep the refrigerator at -10° C?  

Assume Carnot performance.

Hint:  Qc must exactly compensate for the heat leak. Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WFridgeHeat

leak

a) < 70 W

b) = 70 W

c) > 70 W
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The coefficient of performance is:

We need Qc = 70 J each second.

Therefore we need

The motor power is 8.5 Watts. 

Watt = Joule/second.

Solution

There is a 70 W heat leak (the insulation is not perfect) from a room at 

temperature 22° C into an ideal refrigerator.  How much electrical 

power is needed to keep the refrigerator at -10° C?  

Assume Carnot performance.

Hint:  Qc must exactly compensate for the heat leak. Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WFridgeHeat

leak
= − = − = −( 1) ( 1)h h

h c c c

c c

Q T
W Q Q Q Q

Q T

≡ −
295

70( 1) /
263

W J s

This result illustrates an unintuitive

property of refrigerators and heat 

pumps: When Th - Tc is small, they 

pump more heat than the work you 

pay for.
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Supplement: Supplement: PeltierPeltier coolercooler
� Driving a current (~amps) through generates 

a temperature difference.  20-50˚C typical

� Not so common – they’re more costly, take a 

lot of power, and you still have to get rid of the 

heat! But....no moving parts to break.

� How’s it workI

Electrons pushed from electron-deficit 

material (p-type) to electron-rich 

material (n-type); they slow down, 

cooling the top connector. Similarly, 

they heat up in going from n to p-type 

(bottom connector).

Despite the radically different construction, this heat pump must 

obey exactly the same limits on efficiency as the gas-based 

pumps, because these limits are based on the 1st and 2nd laws, 

not any details.
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Refrigerators work less well as Th - Tc becomes large.

The colder you try to go, the less efficient the refrigerator gets. The 

limit as TC goes to zero is zero efficiency ! 

Since heat leaks will not disappear as the object is cooled, you

need to supply more work the colder it gets. The integral of the

power required diverges as Tc → 0. 

Therefore you cannot cool a system to absolute zero.

The Limits of Cooling

CH

CC

TT

T

W

Q

−
≤=εThe maximum efficiency is
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Suppose that the heat flow out of your 20° C

home in the winter is 7 kW. If the temperature 

outside is -15° C, how much power would an 

ideal heat pump require to maintain a constant 

inside temperature?

Exercise: Heat Pump

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WHeat

pump

Heat

leak

a) W < 7 kW

b) W = 7 kW

c) W > 7 kW
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The coefficient of performance is:

We need Qh = 7000 J each second.

Therefore we need

The electric company must supply 836 Watts, much 

less than the 7 kW that a furnace would require! 

Suppose that the heat flow out of your 20° C

home in the winter is 7 kW. If the temperature 

outside is -15° C, how much power would an 

ideal heat pump require to maintain a constant 

inside temperature?

Solution

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WHeat

pump

Heat

leak

≡ − =
258

7000(1 ) 836 /
293

W J s
Beware:

Real heat pumps are not 

nearly ideal, so the 

advantage is smaller.

a) W < 7 kW

b) W = 7 kW

c) W > 7 kW

This is what you’d 

need with an electric 

blanket or furnace.

= − = − = −(1 ) (1 )c c
h c h h

h h

Q T
W Q Q Q Q

Q T
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ACT 2:  Work from a hot brick

We saw that the efficiency of any heat engine is given 

by      ε = 1 - Qc/Qh.

Heat a brick to 400 K.  Connect it to a Carnot Engine. 

What is the average efficiency if the cold reservoir is 

300 K? The brick has a constant heat capacity of C = 1 

J/K.

a)  ε < 25% b) ε = 25% c) ε > 25% 

Wby
QC

Qh

Brick, 400K

300 K
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Solution

Wby
QC

Qh

Brick, 400 K

300 K

Did you use: ε = 1 - Tc/Th ?

If so, you missed that the brick is cooling (it’s not a constant T reservoir).

Therefore, the efficiency (which begins at 25%) drops as the brick cools.

We must integrate: (dQh = -CdT)

( )

( ) 1 1

ln

c h

C

T T

C C
by

Th T

h
h c c c

c

T T
W C T dT C dT

T T

T
C T T T C U T S

T

   
= − − = −   

   

 
= − − = −∆ + ∆ 

 

∫ ∫

This is an interesting result.

Let’s discuss it.

We saw that the efficiency of any heat engine is given by      
ε = 1 - Qc/Qh.

Heat a brick to 400 K.  Connect it to a Carnot Engine.     

What is the average efficiency if the cold reservoir is 300 K? 

The brick has a constant heat capacity of C = 1 J/K.

a)  ε < 25% b) ε = 25% c) ε > 25% 
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Available Work and Free Energy

We just found that the work that the engine can do as the brick cools 

from its initial temperature to Tc is:

The form of this result is useful enough that we

define a new quantity, the “free energy” of the brick:

Fbrick ≡ Ubrick - TenvSbrick

With this definition, Wby = -∆Fbrick.  This is the best we can do.

In general, Wby will be smaller: Wby  ≤ -∆Fbrick = Fi – Ff

Free energy tells how much work can be extracted.  

It is useful, because it is almost entirely a property of the brick.

Only the temperature of the environment is important.

brick brickby cW U T S= −∆ + ∆

In the ACT, 

Tenv was Tc.
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ACT 3:  Work from a cold brick?

Wby
QC

Qh

Brick, 400 K

300 K

We obtained work from a hot brick, initially at 400K.

If instead the brick were initially at 200K, could we still do 

work in our 300K environment?

a) Yes.

b) No, you can’t have Th < Tc.

c) No, we would have to put work in.

Hint: Fill in 

the diagram:
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We obtained work from a hot brick, initially at 400K.

If instead the brick were initially at 200K, could we still do 

work in our 300K environment?

a) Yes.

b) No, you can’t have Th < Tc.

c) No, we would have to put work in.

Solution

Wby
QC

Qh

Brick, 400 K

300 K

Wby
QC

Qh

300 K

Brick, 200K

Think outside the box.  

Use the brick as the cold reservoir:

Question:

Can we use free energy to 

calculate the work?

Environment
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What is the free energy of an object that is hotter or colder than its environment?

The object is in thermal equilibrium when T = Tenv, so we will compare the free 

energy at other temperatures to its value at that temperature, since that is where 

the object will end up.

1) Heat the brick to 310 K.   ∆T = +10 K.

∆FB = 

2) Cool the brick to 290 K.   ∆T = -10 K.

∆FB =

Plot the results:

Exercise: Free Energy and Equilibrium

Useful info:

Heat Capacity of brick: C = 1kJ / K

∆UB = C ∆T = C(TB - 300K)

∆SB = C ln (TB / 300K)

∆FB = ∆UB - (300K) ∆SB
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Solution

What is the free energy of an object that is hotter or colder than its environment?

The object is in thermal equilibrium when T = Tenv, so we will compare the free 

energy at other temperatures to its value at that temperature, since that is where 

the object will end up.

1) Heat the brick to 310 K.   ∆T = +10 K.

∆FB = (1 kJ/K)*(10 K) -(300 K)*(1 kJ/K)*ln(310/300)

= 10 kJ - 9.84 kJ = 0.16 kJ

2) Cool the brick to 290 K.   ∆T = -10 K.

∆FB = (1 kJ/K)*(-10 K) -(300 K)*(1 kJ/K)*ln(290/300)

= -10 kJ + 10.17 kJ = 0.17 kJ

Plot the results:

Useful info:

Heat Capacity of brick: C = 1kJ / K

∆UB = C ∆T = C(TB - 300K)

∆SB = C ln (TB / 300K)

∆FB = ∆UB - (300K) ∆SB

=C(T-Te) - CTeln(T/Te)

You can plot

(x-300)-300*log(x/300)

on your calculator.

That’s how I got this graph.

Conclusion:

The free energy of the brick is

minimum when its temperature 

is the temperature of the 

environment.
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Equilibrium is found at 
Free Energy Minimum

The free energy is minimum when the system has the same temperature as the 

environment.  Why is F minimized in thermal equilibrium?

Equilibrium corresponds to a maximum in total entropy: 

Stot = S + Se

If the system draws dU from the environment, dSe = − dU/Te.  So:

dStot =  dS + dSe =    dS - dU / Te = 0 in equilibrium.

= - (dU - TedS) / Te = - dF / Te

So, dStot and dF are proportional to each other

with a minus sign (for a given Te).

Minimizing F is the same as maximizing Stot.

This is not a new physical concept, 

but F is often a more convenient analysis tool.

S Se Te

U

F

-TS

F

U

The two terms in F:
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• In many situations maximizing total S (sometimes hard to calculate)

to reach equilibrium implies minimizing system free energy 

(sometimes easier to calculate).

• When the system is out of equilibrium, its excess free energy gives 

the amount of work that an ideal engine could extract from it in a 

given environment.

• Free energy can be tabulated for many materials (e.g., chemical fuels).

For the rest of the course we will consider important applications 

of this principle:

Paramagnets (revisited)

The law of atmospheres (revisited)

Solids: defects and impurities

Chemical reactions, especially in gases

Carrier densities in semiconductors

Adsorption of particles on surfaces

Liquid-gas and solid-gas phase transitions

Why is Free Energy important?
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Free Energy Summary

For a Carnot engine: Wby = -∆U + Te ∆S  =  -∆F

where F = U - TS is called the Helmholtz* free energy of the system 
referenced to the temperature Te of the environment (or ‘reservoir’).  

The free energy of an object is always defined with reference to the temperature 
of a reservoir, often the environment. An object’s free energy is minimized when 

its temperature is the same as the environment.

F = U - TS = Free energy → Maximum Available Work

* There are actually several versions of free energy, depending on the

particular situation.  Helmholtz free energy applies when the system 

has a constant volume (e.g., a brick).  When pressure is constant 

(e.g., a pot of water open to the air), we use Gibbs Free Energy,

G = U + pV - TS.  We will not study the other versions in this course.
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CautionI

Maximum Stot Does Not Always Mean Minimum Fsys

When we introduced the Helmholtz free energy, F, (see the “hot brick”

discussion), we assumed that the volume of the brick was constant.  If the 

volume weren’t constant, then the brick could gain or lose energy (and 

entropy) by contracting or expanding.  That would change the analysis.

It is very common that the pressure, not the volume, is constant (e.g., if 

our system is a gas at constant atmospheric pressure).  In this situation, 

we use a different form of free energy, called “Gibbs free energy”: 

G = U+pV-TS.  The pV term takes into account the work that is done 

during volume changes.

We won’t use Gibbs free energy in this course, but it important to be 

aware that the calculation of free energy depends on the situation.
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Converting Chemical Fuels into Work

Here’s a table of free energy for some fuels: (what you get when you burn them)

Problem:

If you could convert the free energy of gas perfectly into work, how many miles 

per gallon would your car achieve?  (Wow, can we really do this problem?  Sure:)

Solution:

We need to know how much work it takes to drive the car 1 mile. 

Obviously that depends on a number of factors:  

speed, tire friction, wind resistance, etc.  

Actually a simple experiment can give us the answer

Determine the decelerating force! Work = force x distance.

Fuel Free Energy

Methanol 18 MJ / liter

Ethanol 24 MJ / liter

Gasoline 35 MJ / liter

Force

http://en.wikipedia.org/wiki/Alcohol_fuel#Methanol_and_ethanol

Note:

Ethanol has less free energy

per liter than gasoline does.

⇒ You’ll get worse mileage.

Question to ponder:

Why don’t the tables of

free energy mention Te?
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Fortunately for us, Professor Kwiat did the experiment:

“I find that when I depress the clutch at 65 mph, my car slows to 55 mph 

in 10 seconds. (∆v ≈ 5 m/s)”

Force of wind and friction = m ∆V/∆t = (2000 kg)(5 m/s)/(10 sec) = 1000 N.

Work to drive 1 mile =  (1000 N)(1600 m) = 1.6 MJ (megajoules).

If the free energy of gas were converted perfectly into work, he would need

1.6 MJ / (33 MJ / liter) = 0.048 liters = 0.011 gallons of fuel.

Therefore, if his car were powered by a perfect Carnot engine,

he could expect  ~90 miles per gallon!

The typical gasoline engine achieves about half of the ideal Carnot efficiency 

so this is not a bad estimate. (en.wikipedia.org/wiki/Internal_combustion_engine#Energy_efficiency)

(This calculation is pretty crude.  The purpose is to demonstrate that                       

Free Energy applies to physics, chemistry and engineering.)

1 mph = 0.45 m/s

Gas Mileage
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Supplement: Gibbs Free Energy

Most phase transitions are observed under constant p,T conditions, not 
constant-V,T.  Unless the stuff is in a closed vessel, it’s open to the air 
(thus, at atmospheric pressure).

In this case, the entropy of the environment changes not only when the 
system energy changes but also when its volume changes.  The 
reservoir is (by assumption) in equilibrium at fixed T and p.  So, as heat 
flows, the change of the reservoir’s entropy is:

The change in the total entropy is thus:

where:

( )
tot R

U p V U pV TS G
S S S S

T T T T

∆ ∆ −∆ + − −∆
∆ = ∆ + ∆ = ∆ − − = =

G U pV TS≡ + −

In these conditions, maximizing Stot means minimizing the system’s G.

Variables U, V, and S are of the system. 

Fixed p and T are of the reservoir.

R R R
R

Q U p V U p V
S

T T T

∆ + ∆ −∆ − ∆
∆ = = =

∆VR = -∆V and ∆UR = -∆U
because total volume and 

total energy are constant.
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Next Monday

• Free Energy and Chemical Potential

• Simple defects in solids

• Ideal gases, revisited


