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Lecture 15
Heat Engines

Review & Examples
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Entropy-increasing processes are irreversible,

because the reverse processes would reduce entropy.

Examples:

• Free-expansion (actually, any particle flow between regions of different density)
• Heat flow between two systems with different temperatures. 

Irreversible Processes

Consider the four processes of interest here:

Isothermal: Heat flow but no T difference. Reversible

Adiabatic: Q = 0.  No heat flow at all. Reversible

Isochoric & Isobaric: Heat flow between different T’s. Irreversible
(Assuming that there are only two reservoirs.)

reversible reversible irreversible irreversible
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ACT 1

1) The entropy of a gas increases during a 

quasi-static isothermal expansion.

What happens to the entropy of the environment?

a) ∆Senv < 0 b) ∆Senv = 0 c) ∆Senv > 0

2) Consider instead the ‘free’ expansion (i.e., not quasi-static) of a gas.  

What happens to the total entropy during this process?

a) ∆Stot < 0 b) ∆Stot = 0 c) ∆Stot > 0

vacuum

Remove the barrier

gas
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1) The entropy of a gas increases during a 

quasi-static isothermal expansion.

What happens to the entropy of the environment?

a) ∆Senv < 0 b) ∆Senv = 0 c) ∆Senv > 0

2) Consider instead the ‘free’ expansion (i.e., not quasi-static) of a gas.  

What happens to the total entropy during this process?

a) ∆Stot < 0 b) ∆Stot = 0 c) ∆Stot > 0

Solution

vacuum

Remove the barrier

gas

Energy (heat) leaves the environment, so its entropy decreases.

In fact, since the environment and gas have the same T, 

the two entropy changes cancel: ∆Stot = 0.  This is a reversible process.
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1) The entropy of a gas increases during a 

quasi-static isothermal expansion.

What happens to the entropy of the environment?

a) ∆Senv < 0 b) ∆Senv = 0 c) ∆Senv > 0

2) Consider instead the ‘free’ expansion (i.e., not quasi-static) of a gas.  

What happens to the total entropy during this process?

a) ∆Stot < 0 b) ∆Stot = 0 c) ∆Stot > 0

Solution

Energy (heat) leaves the environment, so its entropy decreases.

In fact, since the environment and gas have the same T, 

the two entropy changes cancel: ∆Stot = 0.  This is a reversible process.

There is no work or heat flow, so Ugas is constant.  ⇒ T is constant.

However, because the volume increases, so does the number of available states,

and therefore Sgas increases.  Nothing is happening to the environment.

Therefore ∆Stot > 0.  This is not a reversible process.
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Review

Entropy in Macroscopic Systems

Traditional thermodynamic entropy: S = k lnΩ = kσ
We want to calculate S from macrostate information (p, V, T, U, N, etc.)
Start with the definition of temperature in terms of entropy:

The entropy changes when T changes: (We’re keeping V and N fixed.)

If CV is constant:
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Two blocks, each with heat capacity* 

C = 1 J/K are initially at different 

temperatures, T1 = 250 K, T2 = 350 K. 

They are then placed into contact, and 

eventually reach a final temperature of 

300 K. (Why?) What can you say about 

the total change in entropy ∆Stot?

a) ∆Stot < 0 b) ∆Stot = 0 c) ∆Stot > 0

ACT 2

T1 T2

Tf Tf

T1 = 250K 

T2 = 350K

Tf = 300 K

Two masses each 

with heat capacity 

C = 1J/K*

*For a solid, C = CV = Cp, to good approximation, since ∆∆∆∆V ≈≈≈≈ 0.
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Two blocks, each with heat capacity* 

C = 1 J/K are initially at different 

temperatures, T1 = 250 K, T2 = 350 K. 

They are then placed into contact, and 

eventually reach a final temperature of 

300 K. (Why?) What can you say about 

the total change in entropy ∆Stot?

a) ∆Stot < 0 b) ∆Stot = 0 c) ∆Stot > 0

Solution

T1 T2

Tf Tf

T1 = 250K 

T2 = 350K

Tf = 300 K

Two masses each 

with heat capacity 

C = 1J/K*

*For a solid, C = CV = Cp, to good approximation, because ∆V ≈ 0.

This is an irreversible process, so there must be a net increase in entropy.

Let’s calculate ∆S:
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The positive term is slightly 

bigger than the negative term.
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To analyze heat engines, we need to be able to calculate ∆U, ∆T, W, Q, etc. for the 
processes that they use.

How much heat is absorbed by 3 moles of helium when it expands from Vi = 10 liters

to Vf = 20 liters and the temperature is kept at a constant 350 K?  

What are the initial and final pressures?

Example Process
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To analyze heat engines, we need to be able to calculate ∆U, ∆T, W, Q, etc. for the 
processes that they use.

How much heat is absorbed by 3 moles of helium when it expands from Vi = 10 liters

to Vf = 20 liters and the temperature is kept at a constant 350 K?  

What are the initial and final pressures?

Solution

Q = Wby The 1st law.  For an ideal gas, ∆T = 0 → ∆U = 0.
Positive Q means heat flows into the gas.

Wby = nRT ln(Vf/Vi)  = 6048 J An expanding gas does work.

pi = nRT/Vi = 8.72×105 Pa Use the ideal gas law, pV = nRT

pf = pi/2      = 4.36×105 Pa

Where is the heat coming from?

In order to keep the gas at a constant temperature, it must be put in contact with a 

large object (a “heat reservoir”) having that temperature.  The reservoir supplies heat 

to the gas (or absorbs heat, if necessary) in order to keep the gas temperature 

constant.

Very often, we will not show the reservoir in the diagram.  However, whenever we 

talk about a system being kept at a specific temperature, a reservoir is implied.
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Suppose a mole of a diatomic gas, such as O2, is compressed adiabatically so 

the final volume is half the initial volume.  The starting state is Vi = 1 liter, Ti = 300 K.  

What are the final temperature and pressure?

Example Process (2)
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Suppose a mole of a diatomic gas, such as O2, is compressed adiabatically so 

the final volume is half the initial volume.  The starting state is Vi = 1 liter, Ti = 300 K.  

What are the final temperature and pressure?

Equation relating p and V for adiabatic process in α-ideal gas

γ is the ratio of Cp/CV for our diatomic gas (=(α+1)/α).

Solve for pf.

We need to express it in terms of things we know.

Use the ideal gas law to calculate the final temperature.

Alternative: Use the equation relating T and V for an adiabatic 

process to get the final temperature. α = 5/2

Solution
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Helpful Hints in Dealing with 
Engines and Fridges

Sketch the process (see figures below).  

Define Qh and Qc and Wby (or Won) as positive and show directions of flow.  

Determine which Q is given. 

Write the First Law of Thermodynamics (FLT).

We considered three configurations of Carnot cycles:

Qh

Wby

Th

Tc Qc

Engine:

We pay for Qh, 

we want Wby.

Wby = Qh - Qc = εQh
Carnot: ε = 1 - Tc/Th

Qleak= QC

Qh

Won

Th

Tc Qc

Refrigerator:

We pay for Won, 

we want Qc.

Qc = Qh - Won = ΚWon
Carnot: Κ = Tc/(Th - Tc)

Qleak= QhQh

Won

Th

Tc Qc

Heat pump:

We pay for Won, 

we want Qh.

Qh = Qc + Won = ΚWon
Carnot: Κ = Th/(Th - Tc)

These both have large Κ when Th - Tc is small.
This has large ε
when Th - Tc is large.
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ACT 3:
Entropy Change in Heat Pump

Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine
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Solution

Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Energy (heat) is entering the hot reservoir, so the

number of available microstates is increasing.

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine
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Solution

Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Energy (heat) is entering the hot reservoir, so the

number of available microstates is increasing.

Energy (heat) is leaving the cold reservoir.

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine
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Solution

Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Energy (heat) is entering the hot reservoir, so the

number of available microstates is increasing.

Energy (heat) is leaving the cold reservoir.

It’s a reversible cycle, so ∆Stot = 0.  Therefore, the two entropy changes
must cancel.  Remember that the entropy of the “engine” itself does not change.

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine
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Example: Gasoline Engine

p

pb

pa

V
V1 V2

Combustion

exhaust / intake

adiabats

b

a

c

d

b→c and d→a are nearly adiabatic processes, 

because the pistons move too quickly for much heat to flow.

It’s not really a heat engine because the input energy is via fuel injected directly 

into the engine, not via heat flow. There is no obvious hot reservoir. However, 

one can still calculate work and energy input for particular gas types.

We can treat the gasoline engine as an Otto cycle:



Lecture 15, p 19

because Q 0

because Q 0
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Calculate the efficiency:
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⇒
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∴

Compression ratio ≡ V2/V1 ≈ 10
γ = 1.4 (diatomic gas) → ε = 60%

(in reality about 30%, due to friction etc.)
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adiabats

Solution

Write it in terms of volume instead of temperature.  

We know the volume of the cylinders.
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Why not simply use a higher compression ratio?

• If V2 big, we need a huge, heavy engine (OK for fixed installations).

• If V1 small, the temperature gets too high, causing premature ignition.  

High compression engines need high octane gas, which has a higher 

combustion temperature.
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Free Energy Example

Suppose we have a liter of water at T = 100° C.  
What is its free energy, if the environment is T = 20° C?

Verify the result by calculating the amount of work we could obtain.

Remember that cH2O = 4186 J/kg
.K.
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∆F = ∆U - T∆S, where T is the temperature of the environment.
∆U = mc∆T = 1 kg * 4186 J/kg.K * 80 K = 3.349×105 J.
∆S = mc ln(TH2O/Tenv) = 1011 J/K
∆F = 3.87×104 J

Remember to measure temperature in Kelvin.  

Otherwise, you’ll get the entropy wrong.

Suppose we have a liter of water at T = 100° C.  
What is its free energy, if the environment is T = 20° C?

Verify the result by calculating the amount of work we could obtain.

Remember that cH2O = 4186 J/kg
.K.

Solution
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Solution

If we run a Carnot engine, the efficiency at a given water temperature is:

E(T) = 1 - T/Tenv.  So, for each small decrease in water temperature, we get 

this much work out of the engine:

dW = εQ = -εmc dT
Thus, the total work obtained as T drops from 100° C to 20° C is:

( ) ( )

 
= − − 

 

  = −   
  

= ×

∫
293

373

373

293

4

293
1

373
4186 J/K 293 K ln

293

3.87 10  K

W mc dT
T

T

Suppose we have a liter of water at T = 100° C.  
What is its free energy, if the environment is T = 20° C?

Verify the result by calculating the amount of work we could obtain.

Remember that cH2O = 4186 J/kg
.K.



Lecture 15, p 25

Non-mechanical Example:
Peltier Cooler

Electrons in an n-type semiconductor have larger 

U than electrons in a p-type semiconductor.  

Therefore, if we push current through a series of 

n-p and p-n junctions, as shown, the electrons are 

cooled (because they slow down) at p-n and 

heated at n-p.  This geometry gives us a hot and 

cold side.

These devices aren’t as efficient as conventional 

refrigerators, but are much more compact (and 

don’t have mechanical parts).  One can obtain tens 

of degrees of ∆T.

Despite the radically different construction, this 

heat pump obeys the same limits on efficiency as 

the gas-based pumps, because these limits are 

based on the 1st and 2nd laws, not on any details.



Lecture 15, p 26

Peltier Cooler (2)

Here’s the mechanical equivalent of a Peltier cooler.  Raise and lower some gas 

(i.e., between high and low potential).  The raising and lowering is fast, so there 

is little heat flow, and the pressure at any height is the ambient air pressure (i.e., 

it decreases with height).

This refrigerator does not achieve Carnot efficiency, 

because both of the processes represented by the 

horizontal arrows involve irreversible heat flow 

between objects at different temperatures.

p

V

Two adiabats,

two isobarsT’1

T’2

T2

T1

T2

T1

The gas expands 

adiabatically.  T2 < T1

Let the gas cool the upper air.  T’2 > T2 T’2

T’1

The gas contracts 

adiabatically.  T’1 > T’2

Let the gas warm the lower air.  T1 < T’1

Raise the gas.

You’ll do work

Lower the gas.

You’ll do work.

Note: You must do work when 

raising and lowering the gas, 

due to the buoyancy (i.e., the 

mgh energy), which is not 

described by the pV diagram.


