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Physics 213: Lecture 2, Pg 2

William Thomson (1824 William Thomson (1824 –– 1907)1907)

a.k.a. a.k.a. ““Lord KelvinLord Kelvin””

� First wrote down Second Law 
of Thermodynamics (1852)

� Became Professor at University 
of Glasgow at age 22!

� (not age 1.1 x 1021)

�
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Equipartition &  Absolute Temperature

One of the principal aims of this course is to gain a generally 

applicable definition of absolute temperature from statistical 

mechanics (counting).

For now: absolute temperature T is proportional to the average 

translational kinetic energy of a particle in a gas:

<KEtrans> = constant  x T

In fact, each independent quadratic term in the energy of a particle in 

the gas  (e.g., ½ mvx
2, ½κx2, ½Ιω2, but not mgh) is found to have the 

average energy:

<Energymode> = ½ kT Equipartition Theorem

k = Boltzmann constant = 1.38 x 10-23 J/K

is independent of the particle’s properties (mass, charge, etc.)

We will show later why and when this theorem applies.
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Equipartition of Energy: Examples

• Free point particles: only translational kinetic energy  (x, y, z components)

<½ mvx
2> + <½ mvy

2> + <½ mvz
2> = 3(½kT)

Average energy is independent of mass!

• Diatomic molecules: translational and rotational kinetic energy

<½mvx
2> + <½mvy

2> + <½mvz
2> + <½Iω1

2> + <½Iω2
2> = 5(½kT)

At normal temperatures, vibrations aren’t active in molecules.  We’ll see why later.

• Mass on a spring: Kinetic and potential energy

<½kx2> + <½mvx
2> = kT

• Vibrations in solids: Kinetic + potential energy in 3 dimensions

<½κx2>+<½mvx
2> + <½κy2>+<½mvy

2> + <½κz2>+<½mvz
2> = 3kT

This is the average thermal energy per atom.

If there are N atoms in the solid, the total thermal energy is 3NkT.

v

x=0 Equilibrium 

position

½kT per quadratic degree of freedom

http://intro.chem.okstate.edu/1314F00/Laboratory/GLP.htm
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Bowling Ball Puzzle   

Why does the Bowling ball slow down?  Explain using the 

Equipartition Theorem. (Hint: Treat the ball as one big particle.)

What’s the average speed of the bowling ball after it comes into 
equilibrium with the room?  Assume that M = 10 kg and T = 300 K.
Neglect the motion in the z direction.
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Bowling Ball Solution   

Why does the Bowling ball slow down?  Explain using the 

Equipartition Theorem. (Hint: Treat the ball as one big particle.)

What’s the average speed of the bowling ball after it comes into 
equilibrium with the room?  Assume that M = 10 kg and T = 300 K.
Neglect the motion in the z direction.

The center of mass velocity of this “large particle” is 

given by the Equipartition Theorem: 
2

rms

1
v v

M
= ∝

2 2 2

23
2 22 2 2

11

1 1 1 1
( )

2 2 2 2
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Example: Speed of Sound

The speed of sound in a gas is roughly equal to the average speed of the 

particles.  Compare the speed of a typical helium atom (mHe = 4 amu) to 

that of a typical nitrogen molecule (mN2 = 2 x 14 amu) in a gas mixture in 

thermal equilibrium.  What do you expect to be the ratio of sound speeds in 

pure helium and nitrogen?
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Solution

The speed of sound in a gas is roughly equal to the average speed of the 

particles.  Compare the speed of a typical helium atom (mHe = 4 amu) to 

that of a typical nitrogen molecule (mN2 = 2 x 14 amu) in a gas mixture in 

thermal equilibrium.  What do you expect to be the ratio of sound speeds in 

pure helium and nitrogen?

<KEtran>He = <KEtran>N2
Equipartition of translational kinetic energy.  

The rotational energy of nitrogen

molecules is not important here.

mHe/mN2
= 4/28 Helium doesn’t form molecules.

vHe/vN2
= (28/4)1/2 = 2.65 KE = mv2/2 so the speed ratio is the 

inverse square root of the mass ratio.

The ratio of sound speeds

should be approximately The actual ratio of sound speeds is 2.76.

the same as this ratio.
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From Last Lecture: 
The Ideal Gas Law

2

3
TRANS

N
p KE

V
=

( )2 2 2 31
2 2TRANS x y zKE m v v v kT= + + =

Recall that we derived this pressure-energy relation:

Let’s add equipartition:

This gives us the Ideal Gas Law:

pV = NkT
This relation is independent of the 

internal modes of the molecules, 

but it does require that the molecules 

don’t interact much with each other.
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For an ideal gas at constant T, 

p is inversely proportional 

to the volume.

Ideal Gas p-V, p-T  Diagrams

NkT
p

V
=

increasing T
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Real gases may obey more complicated equations of state, 

but two of these variables always determine the third. 

Ordinary gases are often quite close to ideal.

p vs V at various constant T’s 
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Temperature

0

Constant Volume

Gas Thermometer

Pressure → zero as 

T → absolute zero, because 

the thermal kinetic energy of 

the molecules vanishes.

p vs T at constant V

Isotherms
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Consider a fixed volume of an ideal gas. Because 

pV = NkT, if you double either T or N, p goes up by

a factor of 2.

If you double N, how many times as often will a 

particular molecule hit the container walls?

A) x1 B) x1.4 C) x2 D) x4

ACT 1:  Ideal gas behavior
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Consider a fixed volume of an ideal gas. Because 

pV = NkT, if you double either T or N, p goes up by

a factor of 2.

If you double N, how many times as often will a 

particular molecule hit the container walls?

A) x1 B) x1.4 C) x2 D) x4

In an ideal gas, the molecules are  non-interacting except for 

occasional elastic collisions, so the motion of an individual 

molecule does not depend on the others.

The total collision rate is proportional to N, but the rate per 

molecule is independent of N.

Solution
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Dalton’s Law of Partial Pressures
for Ideal Gases

In the derivation of pV=NkT, we never assumed that the molecules 

were all the same.  All we used was equipartition and that they 

don’t interact much.

So, N is the total number of molecules in the gas, independent of type.

Because p is proportional to N, if a gas has multiple components, 

the total pressure is the sum of the individual partial pressures:

ptotal = p1 + p2 + p3 +K,  where pi = NikT / V

Example:

Air is 78% N2 (by number of molecules, not by mass), so the partial 

Pressure of the N2 is 0.78 atmospheres.

NOTE: Dalton’s law does not hold for internal energy, 

because the energy per molecule does depend on the type.

The energy per molecule is proportional to the number of energy modes.
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The Avogadro Constant, NA
and the Gas Constant, R

Sometimes it is useful to specify the number of moles n instead of the 
number of atoms or molecules N:

The ideal gas law can be written in terms of n or N:

pV = NkT = n(NAk)T = nRT

R ≡ NAk is the gas constant = 8.314 J/mol-K

Example:

Consider one mole of an ideal gas at atmospheric pressure and 0º C:

T = 0º C = 273 K, and p = 1 atm = 1.01×105 Pa

A

N
n

N
≡

NA   = 6.022 x 1023 molecules/mole

≡ the Avogadro constant

( ) ( ) ( ) -3 3

5

1 mole 8.31 J/mol K 273 Kn
22.4 10 m 22.4 liters

1.01 10  Pa

RT
V

p

⋅
= = = × =

×
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“Classical” means Equipartition applies: U = αNkT.

“Ideal” means that the molecules interact very weakly (no liquids or solids).

α is constant over limited ranges of temperatures (cf Elements, Ch. 3C).

Internal Energy of a 
Classical Ideal Gas

At room temperature, 

for most gases:

3
2

U NkT=
Monatomic gas (He, Ne, Ar, K) 

3 translational modes (x, y, z)

Diatomic rigid molecules (N2, O2, CO, K)

3 translational modes (x, y, z)

+  2 rotational modes (ωx, ωy)

Non-linear rigid molecules (H2O, NH3, K)

3 translational modes (x, y, z)
+  3 rotational modes (ωx, ωy, ωz)

Any classical ideal gas:

α depends on the type of molecule.

5
2

U NkT=

3U NkT=

These relations for ideal gases only apply in some ranges of T.

U NkT pVα α= =
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Internal Energy of a Gas

A pressurized gas bottle (V = 0.05 m3), contains helium gas at a pressure 

p = 1x107 Pa and temperature T = 300 K.  What is the internal thermal 

energy of this gas?  
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Solution

A pressurized gas bottle (V = 0.05 m3), contains helium gas at a pressure 

p = 1x107 Pa and temperature T = 300 K.  What is the internal thermal 

energy of this gas?  

Solution:

( ) ( ) J105.705.0105.1 537 ×=××= mPapVpVU
2

3
== α

This is a LOT of energy!
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Act 2: Internal Energy of a Gas

Container A contains helium gas (a monatomic gas) at a pressure p

and volume V.  Container B contains hydrogen (a diatomic gas) at 

the same p, V.   

1. Compare the thermal energies in the two cases.

A: UHe < UH B: UHe = UH C: UHe > UH

2. Compare the temperatures in the two cases.

A: THe < TH B: THe = TH C: THe > TH
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Act 2: Solution

Container A contains helium gas (a monatomic gas) at a pressure p

and volume V.  Container B contains hydrogen (a diatomic gas) at 

the same p, V.   

1. Compare the thermal energies in the two cases.

A: UHe < UH B: UHe = UH C: UHe > UH d: can’t tell

2. Compare the temperatures in the two cases.

A: THe < TH B: THe = TH C: THe > TH

Unless you know how much of each gas there is, either container could 

have more energy.  But...assuming that they each have 1 mole...
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Act 2: Solution

Container A contains helium gas (a monatomic gas) at a pressure p

and volume V.  Container B contains hydrogen (a diatomic gas) at 

the same p, V. Assume each container contains 1 mole of gas.

1. Compare the thermal energies in the two cases.

A: UHe < UH B: UHe = UH C: UHe > UH

2. Compare the temperatures in the two cases.

A: THe < TH B: THe = TH C: THe > TH

U pVα=

5
52

3 3
2

diatomicH

He montomic

U

U

α

α
= = =

Each quadratic degree of freedom gets kT/2.  

The monatomic gas has 3 degrees of freedom.

The diatomic gas has 3 + 2.
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Act 2: Solution

Container A contains helium gas (a monatomic gas) at a pressure p

and volume V.  Container B contains hydrogen (a diatomic gas) at 

the same p, V. Assume each container contains 1 mole of gas.  

1. Compare the thermal energies in the two cases.

A: UHe < UH B: UHe = UH C: UHe > UH

2. Compare the temperatures in the two cases.

A: THe < TH B: THe = TH C: THe > TH

U pVα=

5
52

3 3
2

diatomicH

He montomic

U

U

α

α
= = =

Each quadratic degree of freedom gets kT/2.  

The monatomic gas has 3 degrees of freedom.

The diatomic gas has 3 + 2.

As we have defined it thus far, the temperature 

depends only on the translational kinetic energy.
pV = NkT
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Example: Kinetic Energy of a Gas

�A small room at room temperature (T = 300 K) and atmospheric 
pressure measures 3.0 m × 2.4 m × 5.2 m.  

�1) Estimate  the number of molecules in the room.

�2) Estimate the total translational KE associated with the molecules.

�3)  If we assume these molecules are primarily nitrogen (N2) 
molecules, what is their average (rms) speed?
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�A small room at room temperature (T = 300 K) and atmospheric 
pressure measures 3.0 m × 2.4 m × 5.2 m.  

�1) Estimate  the number of molecules in the room.

�2) Estimate the total translational KE associated with the molecules.

�3)  If we assume these molecules are primarily nitrogen (N2) 
molecules, what is their average (rms) speed?

Solution

( ) ( )
( ) ( )

5 3

26

23

1.013 10  Pa 3 2.4 5.2 m
9.2 10 molecules

1.38 10  J/K 300 K

pV
N

kT −

× × × ×
= = = ×

× ×

( )
( )

2

2

2 31
trans 2 2

23

rms 27

3 1.38 10  J/K 300 K3
515 m/s

2 14 1.67 10  kg

N

N

KE m v kT

kT
v

m

−

−

= =

× × ×
= = =

× × ×

( ) ( )5 3 63
trans trans 2

1.5 1.013 10  Pa 3 2.4 5.2 m 5.7 10 JU N KE pV= = = × × × × × = ×
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Changing the Internal Energy

U is a “state” function. It depends only on the state 

of the system (that is, on N, p, V, T , etc.) 

U does not depend on the history.

W and Q are “process” energies. They only tell you 

about the flow of energy, not how much there is.

W and Q depend on the history of the system,

as it evolves from one state to another.

There are two simple ways to change the internal energy (U) of a system:

• Let the environment do Work (W) on the system.

• Let Heat (Q) flow into the system from the environment.

Nomenclature: One can also talk about work done by the system on the environment:  

Wby = - Won. Be careful about  ± signs.

Wby is positive if the system expands; Won is positive if the system is compressed.

Thermal reservoir

Q

Won

U

Moveable

piston
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Energy is conserved !!!

The First Law of Thermodynamics 

∆U   =   Q  +  Won

work done

on the system

change in

total internal energy
heat added           

to system

alternatively:

∆U   =   Q  - Wby

Note: For the rest of the course, unless explicitly stated, we will

ignore KECM, and only consider internal energy that does not

contribute to the motion of the system as a whole.
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What is Heat?

Up to mid-1800’s heat was usually considered to be a distinct substance, 

caloric fluid, stored in an objects and transferred between objects.  In the 

1840s Joule, Rumford, and others discovered that heat is energy.

The term “heat” (Q) is now used to describe thermal energy flow -

thermal energy transferred into or out of a system from some other object 

that has thermal energy.   

(cf. cash transfers into and out of your bank account)

Do not confuse heat (Q) with the system’s internal thermal energy (U).  

That’s confusing the account balance with the deposits and withdrawals.

Sign convention:

Q > 0:  Thermal energy is flowing in.

Q < 0:   Thermal energy is flowing out.
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Next Time

• Heat capacity

• Work!

• The four principal processes

-isochoric

-isobaric

-isothermal

-adiabatic


