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Physics 213: Lecture 3, Pg 2

William Thomson (1824 William Thomson (1824 –– 1907)1907)

a.k.a. a.k.a. ““Lord KelvinLord Kelvin””

� First wrote down Second Law 
of Thermodynamics (1852)

� Became Professor at University 
of Glasgow at age 22!

� (not age 1.1 x 1021)

�
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For an ideal gas at constant T, 

p is inversely proportional 

to the volume.

Ideal Gas p-V, p-T  Diagrams
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Pressure → zero as 

T → absolute zero, because 

the thermal kinetic energy of 

the molecules vanishes.

p vs T at constant V

Isotherms
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Energy is conserved !!!

Last time: The First Law of 
Thermodynamics 

∆U   =   Q  +  Won

work done

on the system

change in

total internal energy
heat added           

to system

alternatively:

∆U   =   Q  - Wby

Note: For the rest of the course, unless explicitly stated, we will

ignore KECM, and only consider internal energy that does not

contribute to the motion of the system as a whole.
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Heat Capacity
Look at Q = ∆U + Wby

If we add heat to a system, there are two general destinations 

for the energy:

• It will “heat up” the system (i.e., raise T).

• It can make the system do work on the surroundings.

Heat capacity is defined to be the heat required to raise the 

temperature of a system by 1K (=1º C).  Its SI units are J/K.

The heat capacity will depend on whether energy goes into work,

instead of only increasing U.  Therefore, we distinguish between:

• Heat capacity at constant volume (CV), for which W = 0.

• Heat capacity at constant pressure (Cp), for which W > 0

(most systems expand when heated).

Q
C  (for small T)

T
≡ ∆

∆
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Add heat to an ideal gas at constant volume:

W = 0 so  ∆U = Q = Cv ∆T

U =  αNkT = αnRT

⇒ CV = ∆U/∆T = αNk = αnR

For an α-ideal gas, CV is independent of T. This results from the fact that the 

number of available modes is constant.

We will see later in the course that:

• this fails at low  temperature, because there are fewer available modes.
• this fails at high temperature, because there are more available modes.   

Constant-Volume Heat Capacity 
of an α-ideal Gas

Monatomic gas → CV = (3/2)Nk = (3/2)nR

Diatomic gas → CV = (5/2)Nk = (5/2)nR

Non-linear gas → CV = (6/2)Nk = (6/2)nR

High-T,  non-metallic solid → CV = (6/2)Nk = (6/2)nR

# available modes

per atom (or molecule)
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CV ~ α � Substances with more internal 
degrees of freedom require more energy to 
produce the same temperature increase:

Why? Because some of the energy has to go 
into “heating up” those other degrees of 
freedom!

The energy is “partitioned equally” �
“equipartition”
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ACT 1

Consider the two systems shown to the right.  

In Case I, the gas is heated at constant 

volume; in Case II, the gas is heated at 

constant pressure.

Compare QI , the amount of heat needed to 

raise the temperature 1ºC in system I to QII, the 

amount of heat needed to raise the 

temperature 1ºC in system II. 

A) QI < QII B) QI = QII C) QI > QII

heat QII
heat QI
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ACT 1: Solution

Consider the two systems shown to the right.  

In Case I, the gas is heated at constant 

volume; in Case II, the gas is heated at 

constant pressure.

Compare QI , the amount of heat needed to 

raise the temperature 1ºC in system I to QII, the 

amount of heat needed to raise the 

temperature 1ºC in system II. 

A) QI < QII B) QI = QII C) QI > QII

heat QII
heat QI

Apply the First Law:   Q = ∆U + Wby

In Case I,  Wby = 0, because the volume does not change.

In Case II, Wby > 0, because the gas is expanding.

Both cases have the same ∆U, because the temperature rise is the same.
→ more heat is required in Case II

→ Cp > Cv
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Work Done by a Gas

When a gas expands, it does work on its environment.

Consider a cylinder filled with gas.  

For a small displacement dx, the work done by the gas is

dWby = F dx = pA dx = p (Adx)= p dV

This is just the area under the p-V curve:

Examples:

The amount of work performed while going from one state 
to another is not unique! It depends on the path taken, 
i.e., at what stages heat is added or removed.  
That’s why W is called a process variable.

The paths differ 

because T varies 

differently along 

the paths.  (Heat 

is added at 

different times.)

= ∫
f

i

V

by

V

W pdV

V

p Wby p

V

Wby

p

V

Wby

dx

A
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Act 2: Work along different paths

i

f

p

V

2
1

i

f

p

a

V

1) Consider the two paths, ia, and af connecting 
points i and f on the pV diagram. Compare the 

work done by the system in going from i to a
(Wia ) to that done by the system in going from 
a to f (Waf):

A) Wia > Waf B)  Wia = Waf C)  Wia < Waf

2)  Consider the two paths, 1 and 2, connecting 
points i and f on the pV diagram. Compare the 
work W2, done by the system along path 2, with
the work W1, along path 1.

A) W2 > W1 B) W2 = W1 C) W2 < W1
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Solution

1) Consider the two paths, ia, and af connecting 
points i and f on the pV diagram. Compare the 

work done by the system in going from i to a
(Wia ) to that done by the system in going from 
a to f (Waf):

A) Wia > Waf B)  Wia = Waf C)  Wia < Waf

2)  Consider the two paths, 1 and 2, connecting 
points i and f on the pV diagram. Compare the 
work W2, done by the system along path 2, with
the work W1, along path 1.

A) W2 > W1 B) W2 = W1 C) W2 < W1

i

f

p

a

V

Not only is the area under ia less than the area under af, but

Wia is negative, because the volume is decreasing.

The net work, Wia+Waf, is the (positive) area of the triangle.

i

f

p

V

2
1

Wiaf is the area 

of the triangle

Wia and Waf

cancel here.
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Solution

1) Consider the two paths, ia, and af connecting 
points i and f on the pV diagram. Compare the 

work done by the system in going from i to a
(Wia ) to that done by the system in going from 
a to f (Waf):

A) Wia > Waf B)  Wia = Waf C)  Wia < Waf

2)  Consider the two paths, 1 and 2, connecting 
points i and f on the pV diagram. Compare the 
work W2, done by the system along path 2, with
the work W1, along path 1.

A) W2 > W1 B) W2 = W1 C) W2 < W1

i

f

p

a

V

Not only is the area under ia less than the area under ab, but

Wia is negative, because the volume is decreasing.

The net work, Wia+Wab, is the area of the triangle.

i

f

p

V

2
1

The area of the semicircle is larger than the

area of the triangle.
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heat Q

work  Wby
Add heat to an ideal gas at constant pressure, 

allowing it to expand.  We saw in the Act that more 

heat is required than in the constant volume case, 

because some of the energy goes into work:  

Q = ∆U + Wby = ∆U + p ∆V
For an ideal gas at constant pressure, p ∆V = Nk ∆T 

The ratio of heat capacity at constant pressure to 

that at constant volume will be useful:

Constant-Pressure Heat Capacity 
of an Ideal Gas

( )

C

1

P

V

Q U p V

T T T

C Nk Nk

∆ ∆
= = +

∆ ∆ ∆
= + = α +

( )1+
= ≡p

V

C

C

α
γ

α

definition
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Work Done by an Expanding Gas (1)

Suppose that 10 moles of O2 gas are allowed to expand 

isothermally (T = 300 K) from an initial volume of 10 liters 

to a final volume of 30 liters.

How much work does the gas do on the piston?
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Solution

Suppose that 10 moles of O2 gas are allowed to expand 

isothermally (T = 300 K) from an initial volume of 10 liters 

to a final volume of 30 liters.

How much work does the gas do on the piston?

( )

by

4

ln

10 8.314 300 ln 3 2.7 10  J

f f

i i

V V

f

iV V

VdV
W pdV nRT nRT

V V

 
= = =  

 

= × × × = ×

∫ ∫

V

p

6

Note: 

10 8.314 300

0.01

2.49 10  Pa 24.6 atm

i

i

nRT
p

V
=

× ×
=

= × =
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Adiabatic (Q = 0)  Process 
of an α-ideal Gas

∆ ∆
= − → = −∫ ∫

T V dT dV

T V T V
α α

( ) ( )
( ) ( ) ( )

ln ln constant

ln T ln ln constant

T constant

= − +
+ = =

=

T V

V T V

V

α α

α

α

Using pV = NkT,  we can also write this in the form:

pV
γ
= constant

Note that pV is not constant.  The temperature is changing.

byU W
NkT

Nk T p V V
V

α

∆ = −

∆ = − ∆ = − ∆

How are p and V related when Q = 0?  In this case, ∆U = -Wby.
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Compare Adiabats and Isotherms 

�The adiabat is steeper, because γ > 1.  The temperature drops if the 
gas expands during an adiabatic process, because U is decreasing.

�Adiabatic and isothermal (quasi-static) processes are reversible,

because there is no heat flow from hot to cold.  

�This is always true, not just for ideal gases.

�“Quasi-static” means slow enough that the system is always near 

thermal equilibrium.  We’ll discuss this more later.

V

p

Adiabat: 

pV
γ
= constant

Isotherms. 

pV = constant

γ = (α+1)/α
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Work Done by an Expanding Gas (2)

Suppose, instead, that the gas expands adiabatically from

10 to 30 liters.

How much work does the gas do?
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Solution

Suppose, instead, that the gas expands adiabatically from

10 to 30 liters.

How much work does the gas do?

by

1

by

constant

V

tan
tan

1

f

i

f
f

i

i

V

V

V
V

V
V

W pdV

p

cons t
W cons t V dV V

γ

γ γ

γ
− −

=

=

= =
−

∫

∫

We still have:

But now:

So,

But, what’s the constant?  It’s constant, so just use pi and Vi:

Therefore, Wby = 2.2×104 J.  It’s smaller than the isothermal result. (why?)

6 7 / 5constant (2.49 10 )(0.01) 3946 SI unitsi ipV γ= = × =
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• Isochoric (constant volume) • Isobaric (constant pressure)

• Isothermal (constant temperature) • Adiabatic (Q = 0)

These processes will illustrate most of Remember the FLT

the physics we’re interested in. ∆U = Q -Wby

Four Thermodynamic Processes 
of Particular Interest to Us

V

p

1

2

V

p

1 2

p

V
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V

1

2
steeper 

line
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Isochoric and Isobaric

V

p

1

2

Q

Temperature

changes

V

p

1 2

Q

p

Temperature and 

volume change

Isochoric (constant volume)

Isobaric (constant pressure)

Beware!!! Many of these equations (marked with *) rely on the ideal gas law.

Make sure

you understand

these equations!

Don’t just memorize!

( )1

by

p

by

W pdV p V

U Nk T p V

Q C T

U W p V

α α

α

= = ∆

∆ = ∆ = ∆

= ∆

= ∆ + = + ∆

∫
* *

*

0by

V

W pdV

Q U C T

Nk T V pα α

= =

= ∆ = ∆

= ∆ = ∆

∫

* *
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p

V

1

2

p

V

1

2

1
p

V γ∝

Volume, pressure and 

temperature change

Isothermal and Adiabatic

2

1

0

ln

by

by

U

Q W

VdV
W pdV NkT NkT

V V

∆ =

=

 
= = =  

 
∫ ∫

*

*

**

Isothermal (constant temperature)

Adiabatic (isolated: no heat flow)

( )2 2 1 1

0

by

Q

U W Nk T p V pVα α

=

∆ = − = ∆ = −* *

V

1
p∝

Thermal Reservoir

T

Volume and 

pressure change

Q

Beware!!! Many of these equations (marked with *) rely on the ideal gas law.
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Example: Isothermal Compression
Suppose we have 3 moles of an ideal polyatomic gas initially with a volume 

of 2 m3, and a temperature of 273 K.  This gas is compressed isothermally

to 1/2 its initial volume.  How much heat must be added to the system 

during this compression? 
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0

ln

ln2

4.7 kJ

f f

i i

on

V V

V V

f

i

U

Q W

dV
pdV nRT

V

V
nRT

V

nRT

∆ =

= −

= + =

 
=  

 
= −

= −

∫ ∫

Solution
Suppose we have 3 moles of an ideal polyatomic gas initially with a volume 

of 2 m3, and a temperature of 273 K.  This gas is compressed isothermally

to 1/2 its initial volume.  How much heat must be added to the system 

during this compression? 

Isothermal process - ideal gas.

FLT

Definition of work then use ideal gas 

law

Integral of dV/V

Note that the heat added is negative -

heat actually must be removed from 

the system during the compression to 

keep the temperature constant.
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Example: Escape Velocity
How much kinetic energy must a nitrogen molecule have in order to escape 

from the Earth’s gravity, starting at the surface?  Ignore collisions with other 

air molecules.  How about a helium atom? At what temperatures will the 

average molecule of each kind have enough energy to escape?
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Solution
How much kinetic energy must a nitrogen molecule have in order to escape 

from the Earth’s gravity, starting at the surface?  Ignore collisions with other 

air molecules.  How about a helium atom?  At what temperatures will the 

average molecule of each kind have enough energy to escape?

KE = GMEm/rE = gmrE To escape, a molecule must overcome the

= 2.9×10-18 J negative potential energy.  Simplify using 

GMEm/rE
2 = g = 9.8 m/s2.  Use rE = 6.4×106 m 

(4000 mi), and mN2 = 4.7×10-26 kg.

TN2
= 2<KE>/3k Equipartition tells us that <KE> = 3kT/2.

= 1.4×105 K That’s hot!

THe = 2×104 K. The mass of a helium atom is smaller by a 

factor of 4/28.  KE and T needed for escape 

are reduced by the same factor.

T is still too low to let much He escape, but it does get high enough to get 

ionized by the Sun’s UV, and then other processes sweep it away.
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Next Week

� • Heat capacity of solids & liquids

�

� • Thermal conductivity

� • Irreversibility
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A Quick Probability Problem

We’ll spend a lot of time calculating probabilities.  Here’s a quick 

introduction.

This lecture room is approximately a cube 15 m on a side.  

Calculate the probability that all the air molecules will be found in the 

left half of the room.

The number of gas molecules in the room is: N = pV / kT ~ 1029.

Each molecule is equally likely to be found in either half, so the 

probability that they are all in the same half is (1/2)10
29 
~ 10-3×1028.

It is hard to conceive how small this number is. All the molecules will 

be in the left half of the room once every 10+3×1028 years (i.e., never).

You can divide this time by any conceivable number you want (a billion, 

a trillion, a google) without affecting this result significantly.


