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Lecture 4:
Classical Illustrations of Macroscopic Thermal Effects 

• Heat capacity of solids & liquids

• Thermal conductivity

Reference for Lecture 5:

Elements Ch 5

References for this Lecture:

Elements Ch 3,4A-C
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Last time: Heat capacity

Q
C

T
≡

∆

Remember the 1st Law of Thermodynamics:

Q = ∆U + Wby (conservation of energy)

If we add heat to a system, it can do two things:

• Raise the temperature (internal energy increases)
• Do mechanical work (e.g., expanding gas)

How much does the temperature rise?

Define heat capacity to be the amount of heat 

required to raise the temperature by 1 K.

The heat capacity is proportional to the amount of material.

It can be measured either at constant volume (CV) or constant pressure (CP).  

It depends on the material, and may also be a function of temperature.
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Heat Capacity of a Solid

The atoms in a solid behave like little balls 

connected by springs.  Here’s one atom:

It has x, y, and z springs as well as x, y, and z motion.

If T is not too low, the equipartition theorem applies, and 

each kinetic and potential term contributes ½ kT to the internal energy:

U = 3(½ kT) + 3(½ kT) = 3kT

Therefore, a solid with N atoms has this heat capacity:

C = 3Nk = 3nR

Note: For solids (and most liquids), the volume doesn’t change much,

so CP ~ CV (no work is done).

The temperature dependence of C is usually much larger in solids and

liquids than in gases (because the forces between atoms are more important). 

x

z

y

Equipartition often works near 

room temperature and above. 
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Heat Capacity and Specific Heat
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Heat capacity: The heat energy required to raise the 

temperature of an object by 1K (=1º C).

It depends on the amount of material. Units:  J / K

Specific heat: The heat capacity normalized to a 

standard amount of material (mass or moles).

It only depends on the kind of material.

Normalize to mass: Units: J/kg.K

Normalize to moles: Units: J/mole.K

“molar specific heat”

Normalize to volume: Units: J/m3.K

“volume specific heat”

Question: Which has the higher c, aluminum or lead?

Upper

case “C”

Lower

case “c”

=vol

C
c

V
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Act 1

An m1 = 485-gram brass block sits in boiling water (T1 = 100° C).  It is taken out 
of the boiling water and placed in a cup containing m2 = 485 grams of ice water 

(T2 = 0° C).  What is the final temperature, TF, of the system (i.e., when the two 
objects have the same T)?   (cbrass =   380 J/kg

.K;    cwater = 4184 J/kg
.K)

a. TF < 50° C b. TF = 50° C c. TF > 50° C
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Solution

An m1 = 485-gram brass block sits in boiling water (T1 = 100° C).  It is taken out 
of the boiling water and placed in a cup containing m2 = 485 grams of ice water 

(T2 = 0° C).  What is the final temperature, TF, of the system (i.e., when the two 
objects have the same T)?   (cbrass =   380 J/kg

.K;    cwater = 4184 J/kg
.K)

a. TF < 50° C b. TF = 50° C c. TF > 50° C

Solution:

Heat flows from the brass to the water.  No work is done, 

and we assume that no energy is lost to the environment.

Remember: Q = C∆T = mc∆T
Brass (heat flows out): Q1 = ∆U1 = m1c1(TF-T1) 

Water (heat flows in): Q2 = ∆U2 = m2c2(TF-T2)

Energy is conserved: Q1 + Q2 = 0

Solve for TF: TF = (m1c1T1+m2c2T2) / (m1c1+m2c2) 

= (c1T1+ c2T2) / (c1+ c2) = 8.3° C

We measured TF = _____° C.

QT1
m1

T2
m2
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Home Exercises: Cooking

While cooking a turkey in a microwave oven that puts out 500 W of power, 
you notice that the temperature probe in the turkey shows a 1°C temperature 
increase every 30 seconds.  If you assume that the turkey has roughly the 
same specific heat as water (c= 4184 J/kg-K), what is your estimate for the 
mass of the turkey?

You place a copper ladle of mass mL=0.15 kg (cL = 386 J/kg-K) - initially at 
room temperature, Troom= 20° C - into a pot containing 0.6 kg of hot cider 
(cc = 4184 J/kg-K), initially at 90° C.  If you forget about the ladle while 
watching a football game on TV, roughly what is its temperature when you try 
to pick it up after a few minutes?

88° C = 190° F

3.6 kg
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Heat Conduction

Thermal energy randomly diffuses equally in all directions, 

like gas particles (next lecture).  More energy diffuses out 

of a high T region than out of a low T region, implying 

net energy flow from HOT to COLD.

The heat current, H, depends on the gradient of temperature,

For a continuous change of T along x: H ∝ dT / dx

For a sharp interface between hot and cold: H ∝ ∆T

HOT COLD
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Heat Conduction (2)

Heat current density J is the heat flow per unit area through a material.

Units: Watts/m2

J = -κ dT / dx (- sign because heat flows toward cold)

Thermal conductivityκ is the proportionality constant, a property of the material.

Units: Watts/m.K

Total heat current H is the total heat flow through the material.

Units: Watts

H = J.A

Hot Cold

J is the heat flow

per unit area

H is the total heat flow

through the whole area
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Typical Problem in Heat Conduction 

1 2

thermal

thermal

T TdT T
J

dx d d

A T
H J A T , 

d R

d
where R

A

− ∆
= κ = κ = κ

κ ∆ = ⋅ = ∆ = 
 

≡
κ

Thermal resistance is defined to 

make the similarity to electrical 

current  flow (Ohm’s Law) clear:

V
I

R

∆
=

I

R

∆V = V1 - V2
= voltage drop

Material with thermal 

conductivity κ

This side is at T2

Area A

This side is at T1

Thickness d
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Exercise: Heat Loss Through Window

If it’s 22°C inside, and 0°C outside, what is the heat 

flow through a glass window of area 0.3 m2 and 

thickness 0.5 cm ?

The thermal conductivity of glass is about 1 W/m.K.
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Solution

If it’s 22°C inside, and 0°C outside, what is the heat 

flow through a glass window of area 0.3 m2 and 

thickness 0.5 cm ?

The thermal conductivity of glass is about 1 W/m.K.

( )
2

3

A
H J A T

d

W 0.3m
H 1 22K 1320 W

mK 5 10 m−

κ = ⋅ = ∆ 
 

  
= =   ×  

That’s a lot!  Windows are a major cause of high heating bills.
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ACT 2

How much heat is lost through a double-pane version 

of that window, with an 0.5-cm air gap? 

The thermal conductivity of air is about 0.03 W/(m K).

Hint:  Ignore the glass, which has a much higher conductivity than air.  

H is limited by the high resistance air gap.

A) 20 W B) 40 W C) 1320 W d) 44,000 W 
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Solution

How much heat is lost through a double-pane version 

of that window, with an 0.5-cm air gap? 

The thermal conductivity of air is about 0.03 W/(m K).

Hint:  Ignore the glass, which has a much higher conductivity than air.  

H is limited by the high resistance air gap.

A) 20 W B) 40 W C) 1320 W d) 44,000 W 

( )
2

3

W 0.3m
H 0.03 22K 39.6 W

mK 5 10 m−

  
= =   ×  

<< 1320 W

Note: Large air gaps don’t always work, due to convection currents.

air
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Thermal conductivities (κ at 300 K): 

air 0.03 W/m-K 

wood 0.1 W/mK

glass  1 W/m-K

aluminum 240 W/m-K 

copper 400 W/m-K

How small can κ be ???

Aerogel 8×10-5W/m-K

What’s aerogel?
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Aerogel

2.5 kg brick 2 g aerogel

κ = 8 x 10-5W/m-K

An artificial substance formed by specially drying a wet silica gel, 
resulting in a solid mesh of microscopic strands.

Used on space missions to catch comet dust 

The least dense solid material known (ρ = 1.9 mg/cm3. ρair = 1.2 mg/cm3).
98% porous, but nevertheless, quite rigid:



Lecture 4, p 17

How Long Does Heat Conduction Take?

The heat current H depends on the temperature difference 

between the two samples, and the thermal resistance: Rth = d/Aκ.

Assume that all the heat leaving A enters B.

The temperature of the samples depends on their initial 

temperatures, the amount of heat flowing into (out of) them, and

their heat capacities.

In general, the time to reach thermal equilibrium is a nontrivial 

problem (Friday...), but we can estimate the time it will take.

T A T B 

K 

H 

A B 
hot cold 

C A C B 

Rth
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How Long to Equilibrate a Rod?

The rate at which heat flows from hot to cold is about

H = κA∆T / d.

The heat capacity is C = cm = c ρ (vol) = c ρ (dA) ρ = density

So the rate at which ∆T is reduced is about

Alternatively, the typical distance that the thermal energy has diffused varies 

with the square root of the time: d ∝√t . This fact is a result of the random 
nature of heat flow, which we’ll discuss more next lecture.

length dArea  A TT+∆T

th

2

th

th

( )( )
 = C

R

( ) ( )( )
R C = (d/ A)(c dA) d

R C

dQ T td T
H

dt dt

T t T td T

dt
τ κ ρ

τ

∆∆
= =

∆ ∆∆
= = = ∝
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You are cooking with two pots that have the same volume. Pot B has 

half the height, but twice the area as Pot A.  Initially the pots are both 

full of boiling water (e.g., 100 °C).  You set them each on the bottom of 
your metal sink.  Which cools faster?

A) Pot A

B) Pot B

C) They cool at same rate

ACT 3: Cooling pots

A
B
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You are cooking with two pots that have the same volume. Pot B has 

half the height, but twice the area as Pot A.  Initially the pots are both 

full of boiling water (e.g., 100 °C).  You set them each on the bottom of 
your metal sink.  Which cools faster?

A) Pot A

B) Pot B

C) They cool at same rate

Solution

The rate of cooling is determined by the time constant τ = RthC.  
The pots have the same amount of water, so they have the same heat capacity.  

The thermal resistance Rth = d/κA.
Assume that the thickness, d, of the pot bottoms is the same.  

Pot B has a larger area, so it will have a smaller Rth, and therefore a shorter τ
� it will cool faster.

A
B
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� Heat “into” A:  

� Guess solution: ∆T(t) = ∆T(t=0) e-t/τ,   or   TA(t) = TB + (TA0 – TB) e-t/τ

� Plug into above DiffEQ:  τ = RthCA (like a discharging capacitor!)

Heat conduction Heat conduction –– How long does it take?How long does it take?

� For simplicity we assume that system B is really big (a “thermal 

reservoir”), so that it’s temperature is always TB.  

U
C

T

∆
=

∆

th th

( ) ( ) ( ( ))
(t) = 

R R

A B A A

A A

T t T T t Q dU d T t
H C

dt dt dt

− ∆ ∆
− = − = = =

TA(t)

TB

TA(t) = TB + ∆T(t)
TA0

TB

th

( ( )) ( )

R A

d T t T t

dt C

∆ ∆
= −
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Act 4: Exponential Cooling

A hot steel bearing (at T = 200 C) is dropped into a large vat of          

cold water at 10 C.  Compare the time it takes the bearing to cool      

from 200 to 190 C to the time it takes to cool from 100 to 90 C.(Assume

the specific heat of steel is ~constant over this temperature range.)

a. t200�190C > t100�90C b. t200�190C = t100�90C c. t200�190C < t100�90C
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Solution

200C

10C

However, the rate of heat flow out 

of the bearing depends on  

Tbearing(t) − Twater, and is different 
(~190 C and ~90 C) for the two 

cases.  Because more heat flows at 

the outset, the initial temperature 

drop is faster. 
t200�190C t100�90C

A hot steel bearing (at T = 200 C) is dropped into a large vat of          

cold water at 10 C.  Compare the time it takes the bearing to cool      

from 200 to 190 C to the time it takes to cool from 100 to 90 C.(Assume

the specific heat of steel is ~constant over this temperature range.)

a. t200�190C > t100�90C b. t200�190C = t100�90C c. t200�190C < t100�90C
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How is it that random motion can give heat flow in a particular direction?

Thermal energy randomly diffuses around, spreading out.  However, the heat 
flow out of a region is proportional to the amount of energy that is there at that 
time.

Look at region 2.  More heat will randomly 
diffuse in from a high T region than from 
low T:

J12 > J21, and J23 > J32.

So there will be a net flow of heat in the 
direction of decreasing T.

In 1-D the heat current density is:

where κ is the thermal conductivity, a property of the material.

FYI: Thermal Diffusion 
and Heat Conduction

x

T

H

dT
J

dx
κ= −

1       2      3

J12
J21

J23
J32
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Next Time

• Random Walk and Particle Diffusion

• Counting and Probability

• Microstates and Macrostates

• The meaning of equilibrium 


