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Lecture 6
Examples and Problems

• Heat capacity of solids & liquids

• Thermal diffusion

• Thermal conductivity

• Irreversibility

• Random Walk and Particle Diffusion

• Counting and Probability

• Microstates and Macrostates

• The meaning of equilibrium
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Heat Capacity and Specific Heat
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Heat capacity: The heat energy required to raise the 

temperature of an object by 1K (=1º C).

It depends on the amount of material. Units:  J / K

Specific heat: The heat capacity normalized to a 

standard amount of material (mass or moles).

It only depends on the kind of material.

Normalize to mass: Units: J/kg.K

Normalize to moles: Units: J/mole.K

“molar specific heat”

Upper

case “C”

Lower

case “c”
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Act 1

1 calorie* is defined to be the energy needed to raise the 

temperature of 1 gram of water 1° C (= 1 K). Therefore, 
given that cH2O = 4184 J/kg

.K, 1 calorie = 4.18 Joule.

1 food Calorie = 1000 calorie = 4180 J

If you weigh 80 kg, consume 2000 Cal/day, and could actually 

convert this entirely into work, how high could you climb?

a. 1 km b. 10 km c. 100 km 

lower case “c”Upper case “C”

*The amount of heat actually depends somewhat on the temperature of the water, 

so there are actually several slightly different “calorie” definitions.
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Solution

1 calorie is defined to be the energy needed to raise the 

temperature of 1 gram of water 1° C (= 1 K). Therefore, 
given that cH2O = 4184 J/kg

.K, 1 calorie = 4.18 Joule.

1 food Calorie = 1000 calorie = 4180 J

If you weigh 80 kg, consume 2000 Cal/day, and could actually 

convert this entirely into work, how high could you climb?

a. 1 km b. 10 km c. 100 km

2000 Cal = 8.36×106 J = mgh
So, h = 8.36×106 J / (80 kg × 9.8 m/s2) = 10.7 km

Note: Tour de France riders consume 6000-9000 Cal/day.

lower case “c”Upper case “C”
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Exercise: Spacecraft Heat Shields

This false-color view of Titan (moon of 

Saturn) is a composite of images 

captured by Cassini's infrared camera, 

which can penetrate some of Titan's 

clouds. Light and dark regions in the 

upper left quadrant are unknown types 

of terrain on Titan's surface.

The Huygens spacecraft entered the 

atmosphere on Jan. 14, 2005, initially 

traveling at ~6 km/s. After decelerating 

from friction, the heat shield was 

jettisoned, and three parachutes were 

deployed to allow a soft landing.

What is the temperature rise on entry, assuming that half of the thermal 

energy goes into the ship (and half to the atmosphere)?  

Assume csteel = 500 J/kg-K.
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v = 6 km/s

c = 500 J/kg-K

Use conservation of energy (1st law of thermodynamics).

Half of the initial kinetic energy becomes internal thermal energy.

The problem is that steel melts at ~1700 K!  For this reason, the 

heat shield is not made of steel, but rather a ceramic that burns off 

(“ablates”).  Also, the ceramic has a very low thermal conductivity!    

2

2 3 2

1 1

2 2

(6 10 m/s)
18,000 K!

4 4 500 J/kg-K

  = ∆ = ∆ 
 

×
∆ =

×
⇒ = =

mv C T cm T

v
T

c

Solution

Note that m cancels.



Lecture 6, p. 7

Exercise: Heat Capacity

Two blocks of the same material are put in contact.  Block 1 has

m1 = 1 kg, and its initial temperature is T1 = 75° C.  Block 2 has 
m2 = 2 kg, and T2 = 25° C.  What is the temperature after the blocks 
reach thermal equilibrium?

1  
2
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Solution

Two blocks of the same material are put in contact.  Block 1 has

m1 = 1 kg, and its initial temperature is T1 = 75° C.  Block 2 has 
m2 = 2 kg, and T2 = 25° C.  What is the temperature after the blocks 
reach thermal equilibrium?

The two blocks have the same (unknown) specific heat.  However, the heat capacity 

of block 2, C2 = cm2, is twice as large as that of block 1, C1 = cm1.

We can use the 1st law (conservation of energy) to determine the final temperature:

Uf = c(m1+m2)Tf
= Ui = cm1T1 + cm2T2 .

Solve for Tf:

Question:

Suppose we measure temperature in Kelvin.  Will we get a different answer?

1 1 2 2

1 1

1 75 2 25
41.7  C

3
f

mT m T
T

m m

+ × + ×
= = = °

+

1  
2
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The solution to the 3-D random walk, with varying ℓ and v, is similar 

(but the math is messier).  

The mean square displacement along x is still proportional to t:

D is called the diffusion constant*.

The 3-D displacement (along x, y, and z combined) is:

The Diffusion Constant

2 2= < > =rmsx x Dt

2 2 2 2 6= + + =r x y z Dt

2
2 1

3
, where2  

3
= = =

ℓ
ℓ

τ
x Dt D v These are the average 

values of τ, v, and ℓ.

* The numerical coefficients in general depend on the distribution of distances 

and time intervals. For Phys. 213 we’ll use the form above.
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Consider impurity atoms diffusing from the top surface of an 
aluminum film toward an interface with a semiconductor.

Assume that each impurity makes a random step of ℓ = 10-10 m 

about once every 10 seconds.

1. Approximately what is the diffusion constant, D?

2. If the Al is 10-7 m thick, approximately how long will it take
before many impurities have diffused through it?

Exercise: 
Impurity Diffusion in Semiconductors

Al

Si

x

Note: This is an important problem, because impurities affect 
the electrical properties of the Si, usually in a way we don’t want.
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( )2102
21 2

10 m
0.3 10 m /s

3 30s

−

−≈ = = ×
ℓ

τ
D

Mean free path ℓ = 10-10 m

Time between steps τ = 10 s

We only care about motion along x, so use the 1-D formula:

( )

7

rms

2
72

7

-21 2

x 2Dt 10 m

10 mx
t 1.6 10 s ~ 6 months
2D 0.6 10 m /s

−

−

= =

= ≈ = ×
×

Solution
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Act 2

If we make the thickness of the film twice as big, 
how much longer will the device last?

a) ×½

b) ×0.71

c) ×1.41

d) ×2

e) ×4
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Solution

If we make the thickness of the film twice as big, 
how much longer will the device last?

a) ×½

b) ×0.71

c) ×1.41

d) ×2

e) ×4 The diffusion time is proportional 
to the square of the thickness.
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A perfume bottle is opened, and the molecules begin to diffuse through the 

air.  Suppose that perfume molecules move about 10 nm between 

collisions with air molecules, and that their average speed is v ~ 100 m/s.

1) What is the diffusion constant of perfume in air?

2) Suppose you hold your nose 10 cm from the perfume bottle.  When will 

you be able to smell the perfume?  What about a person across the room 

(5 m away)?

3) Are these times reasonable?

Exercise: Diffusion

× 4:1.5 10  s 
nose

Ans
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Solution

A perfume bottle is opened, and the molecules begin to diffuse through the 

air.  Suppose that perfume molecules move about 10 nm between 

collisions with air molecules, and that their average speed is v ~ 100 m/s.

1) What is the diffusion constant of perfume in air?

2) Suppose you hold your nose 10 cm from the perfume bottle.  When will 

you be able to smell the perfume?  What about a person across the room 

(5 m away)?

3) Are these times reasonable?

7 21
3

3.33 10  m /s−= = ×ℓD v

2

4

7

1.5 10  s ~ 4 hours (nose)
2

3.8 10  s ~ 1 year (across room)

= = ×

= ×

x
t

D

These times are much too long.  In this situation, conduction (air currents) 

is much more important than diffusion.  However, in solids, where 

conduction is rarely important, diffusion can dominate.
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Act 3: Isotope Separation

You have the task of separating two isotopes of Uranium: 
235U and 238U. Your lab partner suggests the following: Put a gas 

containing both of them at one end of a long tube through which 

they will diffuse.   Which will get to the far end first?

A) 235U B) 238U C) Neither (equal time)
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Solution

You have the task of separating two isotopes of Uranium: 
235U and 238U. Your lab partner suggests the following: Put a gas 

containing both of them at one end of a long tube through which 

they will diffuse.   Which will get to the far end first?

A) 235U B) 238U C) Neither (equal time)

The diffusion time t ~ ℓ2/3D, where D = vℓ/3.  

From equipartition:

Therefore t ∝ 1/D ∝ 1/v ∝√m.  The heavier isotope takes slightly longer.  
(This is the technique first used in the Manhattan Project. It was then found 

that centrifuges speed up the process.)

21 3
3 /

2 2
mv kT v kT m=⇒=
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ACT 4:  Free Expansion of a GasACT 4:  Free Expansion of a Gas

Free expansion occurs when a valve is opened allowing a gas

to expand into a bigger container.

Such an expansion is:

A) Reversible, because the gas does no work and thus loses 

no energy.

B) Reversible, because there is no heat flow from outside.

C) Irreversible, because the gas won’t spontaneously go back 

into the smaller volume.   
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SolutionSolution

Free expansion occurs when a valve is opened allowing a gas

to expand into a bigger container.

Such an expansion is:

A) Reversible, because the gas does no work and thus loses 

no energy.

B) Reversible, because there is no heat flow from outside.

C) Irreversible, because the gas won’t spontaneously go back 

into the smaller volume.   

Because there are many fewer microstates.
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Definitions:

Macrostate: The set of quantities we are interested in (e.g., p, V, T).

Microstate: A specific internal configuration of the system,

with definite values of all the internal variables.

Assume:

Due to the randomness of thermal processes,

every microstate is equally likely.  Therefore

the probability of observing a particular macrostate is 

proportional to the number of corresponding microstates.

The Meaning of Equilibrium (1)The Meaning of Equilibrium (1)
An Introduction to Statistical MechanicsAn Introduction to Statistical Mechanics

Many systems are described by binary distributions:

• Random walk
• Coin flipping
• Electron spin

This can be solved using the binomial formula,

because each particle has two choices:

P(A) = ΩΑ/Ωtot

( )
( )

Ω = ≡
−

Ω =

LL N N

L L

N

tot

N!
N,N C

N ! N N !

2
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Example: Electron SpinExample: Electron Spin

Electrons have spin and associated magnetic moment µ.  
They can only point “up” or “down”:*

Consider a system of N=9 spins:

The total magnetic moment (what we can measure) is:

M = (Nup - Ndown)µ ≡ mµ

A macrostate is described by m.  The microstate above has m = +1.

or

*This is a result from P214 that you’ll have to take on faith.

One
microstate

Similar to HHTTHTHHT 
in a coin flipping experiment:

m = “spin excess” = Nup – Ndown
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up

up down

N! N!
(N ) (m)

N m N mN !N !
! !

2 2

Ω = Ω =
+ −   

   
   

⇒

Electron Spin (2)Electron Spin (2)
Count microstates for each value of m:

Ω(Nup)
or

Ω(m)

Number of up spins: Nup = 0 1 2 3 4 5 6 7 8 9

Nup - Ndown: m = -9 -7 -5 -3 -1 1 3 5 7 9

# microstates: Ω = 1 9 36 84 126 126 84 36 9 1

Each macrostate is described by m.
(what we measure).

This problem will become more interesting later in the course. We will put the 

spins in a magnetic field.  The energy of spin up will not equal the spin down 

energy, and the probabilities will change.

 =  
 

up N

up down

N! 1
P(N )

N !N ! 2
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When N is large, the binomial formula becomes impossible to evaluate 
on a calculator.

Fortunately, when N is large the shape of the 
distribution becomes a Gaussian:

This expression can be evaluated for very large N (e.g., 1023).

Does it work? Try N = 20, m = 2:

Binomial: Ω(1) = 167960, P(1) = 0.160
Gaussian: Ω(1) = 169276, P(1) = 0.161

The agreement improves as N increases.

( ) ( )2 2
N

1/ 2 1/ 2
m / 2N m / 2N2 2

N N
(m) 2 e P(m) e− −

π π
Ω = =⇒

Gaussian Approximation to the Binomial DistributionGaussian Approximation to the Binomial Distribution

up up N

up down up down

N! N! 1
(N ) P(N )

N !N ! N !N ! 2

 Ω = = 


⇒ 


Gaussian:

Ex:
N = 1010, m = 105

P(m) = 8.0×10-6
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Suppose that a particle is undergoing a 1-dimensional random walk 

(equally likely steps in the + or minus directions.)  

What is the probability:

1) that after N steps it is exactly where it started? Evaluate it for N=10.

2) that after N steps it is within 2 steps of the maximum possible positive 

position?  Evaluate it for N=10.

Exercise: Random Walk
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Suppose that a particle is undergoing a 1-dimensional random walk 

(equally likely steps in the + or minus directions.)  

What is the probability:

1) that after N steps it is exactly where it started? Evaluate it for N=10.

There are 2N total microstates.  We want N+ = N- = N/2.  The probability 

that this happens is:

2) that after N steps it is within 2 steps of the maximum possible positive 

position?  Evaluate it for N=10.

Solution

( )
( )22

!
0 0.246

! 2NN

N
P = =
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Suppose that a particle is undergoing a 1-dimensional random walk 

(equally likely steps in the + or minus directions.)  

What is the probability:

1) that after N steps it is exactly where it started? Evaluate it for N=10.

There are 2N total microstates.  We want N+ = N- = N/2.  The probability 

that this happens is:

2) that after N steps it is within 2 steps of the maximum possible positive 

position?  Evaluate it for N=10.

We must sum the three probabilities: P(N) + P(N-1) + P(N-2).

P(N) = 1/2N one microstate

P(N-1) = 0 N+ - N- must be even when N is even.

P(N-2) = N/2N N microstates: N+ = N-1 and N- = 1.

The sum is 

Solution

( )
( )22

!
0 0.246

! 2NN

N
P = =

( ) 1
2 : 0.011

2N
N

P N N
+

− = =
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Do the previous exercise when N = 106.

For what value of m is P(m) half of P(0)?

Exercise: Random Walk (2)
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Solution

Do the previous exercise when N = 106.

There is no way that we are going to evaluate 21,000,000.

We must use the Gaussian approximation:

1) m = 0:

2) m = N and m = N-2:

For what value of m is P(m) half of P(0)?

We want   

( ) 21/ 2
m / 2N2

N
P(m) e−

π
=

( ) ( )6
1/ 2

42

10
P 0 8 10−

π
= = ×

( ) ( ) 6

6

1/ 2
10 / 22

10
P N e 0 for all practical purposes.−

π
= =

( )2m / 2N 1
e m 2ln 2 N 1.177 N 1177

2

− = = = =⇒
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Example: Probability & Microstates

The typical baseball player gets a hit 25% of the time.  If this player gets 

several hits in a row, he is said to be “on a streak”, and it’s attributed to his 

skill.

1) What is the probability that this player will get a hit exactly 25% of the time 

if he tries 20 times (i.e., 5 hits and 15 misses)?

2) What is the probability that this player will get five hits (no misses) in a row?
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The typical baseball player gets a hit 25% of the time.  If this player gets 

several hits in a row, he is said to be “on a streak”, and it’s attributed to his 

skill.

1) What is the probability that this player will get a hit exactly 25% of the time 

if he tries 20 times (i.e., 5 hits and 15 misses)?

2) What is the probability that this player will get five hits (no misses) in a row?

Solution

There is only one way to do this (one microstate).  The probability is: P = 0.255 = 0.00098.  

That’s fairly small (about one in a thousand) for a particular player, but not unlikely to 

happen by chance somewhere on a particular day, if one remembers that there are more 

than 1000 “at bats” every day in major league baseball.

The probability of obtaining a particular microstate (five hits and 15 misses, in a specific 

order) is 0.255×0.7515 = 1.3×10-5.  Now, count microstates (different orderings of hits 
and misses): N = 20! / (5!×15!) = 15,504.  Each microstate is equally likely, so the 
probability is 1.3×10-5 x 15,504 = 0.20.

Here’s one microstate:  MMMMMHMHMMMHHMMMMHMM


