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213 Midterm coming up213 Midterm coming up……

Monday Nov 12 @ 7 pm (conflict exam @ 5:15pm)

Covers:

Lectures 1-12 (not including thermal radiation)

HW 1-4

Discussion 1-4

Labs 1-2

Review Session 

Sunday Nov 11, 3-5 PM, 141 Loomis

HW 4 is not due until Thursday, Nov 15 at 8 am, but some of the 
problems are relevant for the exam.
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Lecture 7
Entropy and Exchange between Systems 

Reference for this Lecture:

Elements Ch 6
Reference for Lecture 8:

Elements Ch 7

• Counting microstates of combined systems

• Volume exchange between systems

• Definition of Entropy and its role in equilibrium
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Review: Some definitions
State:

The details of a particular particle, e.g.:

. what volume bin it is in

. the orientation of its spin

. its velocity 

Microstate:

The configuration of states for a set of particles, e.g.:

. which bin each particle is in

. the velocities of all the particles

. the orientation of all the spins  -- ↑↑↓↑↓

Macrostate:

The collection of all microstates that correspond to a 

particular macroscopic property of the system, e.g.:

. all the particles on the left side 

. A box of gas has a particular P, V, and T

. 1/3 of the particles with their spins “up”

. no particles as a gas: all as liquid
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ACT 1: Microstates

Consider 10 coin flips.  Which sequence is least likely?

a. H H H H H H H H H H

b. H H H H H T T T T T

c. H T H T H T H T H T

d. H H T H T T T H H H

e. T T H T H H H T T H
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ACT 1: Solution

Consider 10 coin flips.  Which sequence is least likely?

a. H H H H H H H H H H

b. H H H H H T T T T T

c. H T H T H T H T H T

d. H H T H T T T H H H

e. T T H T H H H T T H

Each sequence is equally likely! 

Now, imagine that the coins are being flipped by random thermal 

motion.  Each sequence is a microstate of the 10-coin system.

In thermal equilibrium, every microstate is equally likely!

If instead we ask which macrostate is least likely, it is the one with all 

the coins ‘heads’ (or ‘tails’).  

Why? Because there is only one corresponding microstate.
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A New Definition
In an isolated system in thermal equilibrium, each microstate is equally likely. 

We’ll learn later why the system must be isolated.

So, the probability that you find some macrostate A is just 

the fraction of all the microstates that correspond to A: 

P(A)=Ω(A)/Ωtotal. 

To keep track of the large numbers of states, 

we define entropy, σ:

σ(A) ≡ ln(Ω(A))
⇒ P(A) ∝ eσ(A)

In thermal equilibrium, 

the most likely macrostate is the one with the biggest entropy σ.
We call that the “equilibrium state” even though there are really 

fluctuations around it.  If the system is big (many particles), the 

relative size of these fluctuations is negligible.

Entropy is the logarithm

of the number of microstates. 
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Last week we considered binomial (two-state) systems:

Coins land with either heads or tails, electronic spins have magnetic 

moments m pointing either with or against an applied field, and 

1-dimensional drunks can step a distance either left or right.  

We defined the terms “microstate” and “macrostate” to describe 

each of these systems:

System One particular microstate Macrostate (what we measure)

Spins U D D U D U U U D U Total magnetic moment = µ(Nup - Ndown)
Coins H T T  H T H H H T H NH - NT
Steps R L L  R L R R R  L R Net displacement = ℓ(NR - NL)

Now we will study systems that have more than two states:

Each particle can be placed in any of many bins.

This “bin problem” is directly related to particles in gases and solids.

Counting Microstates (revisited)
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Counting Arrangements of Objects

Problem 1: Distinct objects in bins with unlimited occupancy.

How many ways can you arrange 2 distinct objects (A and B) in 3 bins?        

# arrangements (# microstates) Ω =

Suppose we throw the 2 objects up and let them land randomly.

What is the probability of getting a specified microstate? P =       

How many microstates for N different objects in M bins? Ω =

Find Ω for two identical objects (A and A) in 3 bins. Ω =

Work space:

A B

Identical vs distinct 

(or distinguishable) is important!
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Solution

Problem 1: Distinct objects in bins with unlimited occupancy.

How many ways can you arrange 2 distinct objects (A and B) in 3 bins?        

# arrangements (# microstates) Ω = 9

Now throw the 2 objects up and let them land randomly.

What is the probability of getting a specified microstate? P = 1/9

How many microstates for N different objects in M bins? Ω = MN

Find Ω for two identical objects (A and A) in 3 bins. Ω = ???

Work space:

A B

A B

A B

A

A A

A A

AB

B

B B

B

B

Identical vs distinct 

(or distinguishable) is important!
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ACT 2: Effect of Indistinguishability

Consider 2 particles in a box with two bins (multiple occupancy 

allowed).  Compare the total number of microstates Ωd if the 

particles are distinguishable, with Ωi, the total number of 

microstates if the particles are identical (indistinguishable).

a) Ωi < Ωd b) Ωi = Ωd c) Ωi > Ωd
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Solution

Consider 2 particles in a box with two bins (multiple occupancy 

allowed).  Compare the total number of microstates Ωd if the 

particles are distinguishable, with Ωi, the total number of 

microstates if the particles are identical (indistinguishable).

a) Ωi < Ωd b) Ωi = Ωd c) Ωi > Ωd

For distinguishable particles (“a” and “b”), the states are:

|ab| | | |ab| |a|b| |b|a|

For indistinguishable particles (“a” and “a”), the states are:

|aa| | | |aa| |a|a|

This is a general result – indistinguishable particles    

typically have fewer microstates.
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Why Do We Consider 
Identical Particles?

Many microscopic objects are identical:

• All elementary particles of a given type are identical (indistinguishable).
Electrons, protons, neutrons, etc.

• All atoms of a given type are identical.
E.g., 235U, 12C.

• All molecules of a given type are identical.
E.g., O2, N2, H2O, C6H6.

“Type” includes isotope and any other internal structure.

Macroscopic objects (e.g., baseballs) are never identical, because their 

internal structure is too complicated ever to be exactly the same.
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Single occupancy (1)

In many situations, each bin can only hold a single object.

Problem #2: Distinct objects in single-occupancy bins.

How many ways can you arrange 2 distinct objects (A,B) in 4 bins?
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Solution

In many situations, each bin can only hold a single object.

Problem #2: Distinct objects in single-occupancy bins.

How many ways can you arrange 2 distinct objects (A,B) in 4 bins?

A A A A

There are 4 ways to put A in. (A has 4 possible states.)  

For each of these, there are 3 states for B.

Therefore, the total number of microstates is: Ω = 4×3 = 12.

What if we have 3 particles (A,B,C)?

For each (A,B) microstate, C has 2 states (empty bins).

Therefore, Ω = 4×3×2 = 24.

For N distinguishable objects in M single-occupancy bins:

Ω = M! / (M-N)!
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Single occupancy (2)

What happens if the particles are identical?

Problem #3: Identical objects in single-occupancy bins.

First, look at a specific distinct particle problem 4 particles in 10 bins:

Ω = M! / (M-N)! = 10! / 6! = 5040

Look at a particular microstate:

If the particles are all identical, 

we have over counted the microstates.

By what factor?

Swapping “A”s doesn’t give a new microstate, so we must divide by 

the number of permutations of A particles, namely 4! = 24.

The number of microstates for identical particles is:

Ω = M! / (M-N)!N! = 10! / 6!4! = 210

A B C D

A A A A

swap
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Summary of Bin Occupancy 
and Particle Type

The possible occupancy rules for bins:

• unlimited occupancy

• single occupancy

The possible particle types are

• distinct (distinguishable)

• identical (indistinguishable)

For N << M, the occupancy rule doesn’t matter
because multiple occupancies are rare.  (Remember: N objects and M bins)

Example:

Compare MN with M!/(M-N)! when M = 30 and N = 2:

Multiple occupancy: 302 = 900 The single occupancy

Single occupancy: 30!/28! = 870 requirement loses 30 microstates.

4 cases
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Summary of Bin Counting

Number of microstates for N objects in M bins:

Unlimited Single N << M

occupancy occupancy Dilute gas

Distinguishable

Identical

N N

N

!
M

( )!

( 1)! ! M

( 1)! ! ( )! ! N!

M
M

M N

N M M

M N M N N

−

+ −

− −

Needed at high densities

(liquids and solids)

OK for gases, too.

OK at low densities

(gases only)
This one is derived 

in the Appendix
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Example: Gas Molecules
• This is a “real world” problem.  Consider gas molecules in a container.

We are going to count the microstates and use the result to determine the 

condition for equilibrium when two containers are in contact.

• In each volume V, the number of  states, M, available to a 

particle is proportional to V, as you would expect.  Write: M = nTV. 

• nT is the proportionality constant.  The subscript reminds us that,  because 

particles with different velocities are in different states, nT depends on 

temperature.

• We will be working in the dilute gas limit, i.e. M>>N. For indistinguishable

particles, the number of microstates is given by: Ω = MN/N!. If we are 

dealing with problems where the number of particles is fixed, the factor of 

N! drops out. Therefore, we can simplify the math by using the result for 

distinguishable particles: Ω = MN.

• In realistic problems, the number of microstates is going to be enormous*.  

Suppose that M = 100, and that we have a mole of gas.  Then

• Ω =MN ~ 1001024 This is an incredibly large number  I would say “astronomical”,

but astronomical numbers are puny in comparison.

Volume V

molecule

Container

*Why not an uncountable infinity of states? Quantum mechanics!( ∆x ∆p > ћ)
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ACT 3: Counting states

Consider N particles in a box of volume V.   It has a total 

number of states (i.e., bins) M, and a total number of 

microstates Ω = MN.  If we double the volume (2V), 

what is the new number of microstates Ω’?

a) Ω’ = Ω b) Ω’ = 2 Ω c) Ω’ = 2NΩ d) Ω’ = Ω2
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Solution

Consider N particles in a box of volume V.   It has a total 

number of states (i.e., cells) M, and a total number of 

microstates Ω = MN.  If we double the volume (2V), 

what is the new number of microstates Ω’?

a) Ω’ = Ω b) Ω’ = 2 Ω c) Ω’ = 2NΩ d) Ω’ = Ω2

If you double the volume, M doubles.  Ω’ = (2M)N = 2N MN = 2NΩ

To get a feeling for how rapidly Ω varies with volume, suppose the 

volume increases by 0.1%: 

Ω’ = (1.001 M)N = 1.001N Ω

If N = 1024 (e.g., gas in a room), this increase in the number of 

states is enormous:  (1.001)N will overflow your calculator.
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Counting States:
Two Interacting Systems

Divide a box of volume V into two parts, volumes V1 and V2: V = V1 + V2

Put N1 particles in V1 and N2 particles in V2. N = N1 + N2

The partition can move.  Its position (the value of V1) describes the macrostate.

The total number of microstates depends on the position of the partition 

(i,.e., on V1 and V2):

Ωtot = Ω1
. Ω2 = (nTV1)

N1 (nTV2)
N2 = (nT)

NV1
N1V2

N2

Ωtot is the product, because microstates in V1 are independent of microstates in V2.

V1 V2 = V - V1 Ω1 = (nTV1)
N1

N1 N2 =N - N1 Ω2 = (nTV2)
N2

moveable partition
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Equilibrium of Volume Exchange

The partition can move, so let’s ask:

What is the most probable macrostate? 

(the most likely V1)

Solution:

Find the value of V1 that maximizes Ωtot:

Ωtot = (nT)
NV1

N1 V2
N2 = constant .V1

N1 . V2
N2 = constant .V1

N1(V-V1)
N2

It is simpler to maximize the logarithm:

ln(Ωtot) = constant + N1lnV1 + N2 ln(V-V1)

Remember that we have defined this to be the entropy:  σ = ln(Ω). 
So we will be maximizing the entropy:

V1 V - V1

( )
1 1

ln
0tot tot

d d

dV dV

Ω σ
= = The condition for equilibrium

when volume is exchanged.
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Volume Equilibrium

Let’s solve the problem.  Use

This is the ideal gas law result. The ideal gas law is

In equilibrium, the pressures will be equal, and we assumed that the 

temperatures were equal (same nT), so the densities will be equal as well.

The important general result here is that when volume is exchanged 

between two systems, the equilibrium condition is

A similar relation will hold when any quantity is exchanged.

Just replace V with the exchanged quantity. 

1 2 1 2 1 2

1 1 1 1 2 1 2

1 2

1 2

ln( ) ln( ) ln( ) ln( ) ln( )
0tot

d d d N N

dV dV V dV V V V

N N

V V

Ω Ω ∂ Ω Ω ∂ Ω
= + = − − =

∂ ∂

=⇒

=

( )1
1 1

ln 1d V

dV V
=

N
p kT

V
=

1 2 1 2

1 2 1 2

ln( ) l
,

(
r 

)
o

n
 

d d

dV V dV V

Ω ∂ Ω σ ∂σ
= =

∂ ∂
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Entropy

We have defined entropy to be the natural log of the number of 

accessible microstates.

σ = ln Ω

Why is this useful?  Why not just use Ω?

• Entropy is additive: σtot = ln Ωtot = ln(Ω1Ω2) = σ1+σ2
Conceptually simpler.  Simplifies the math as well.

• The numbers are much more manageable.
Compare 210

24
with 1024ln2. 

Note: σ and Ω are state functions. If you know the macrostate

of a system you can, in principle, calculate the number of 

corresponding microstates.

A property of system 1

A property of system 2
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Summary

• The total entropy of an isolated system is maximum in equilibrium.

• So if two parts (1 and 2) can exchange V, equilibrium requires:

This is a general equilibrium condition.
A similar relation holds for any
exchanged quantity.

Entropy of an ideal gas:

For N distinguishable particles in volume V: Ω ∝ VN ⇒ σ = NlnV + const

You can’t calculate the constant (that requires quantum mechanics), 
but it drops out of problems where one only needs the entropy change.
For example, if the temperature is constant:

σf - σi = NlnVf - NlnVi = Nln(Vf/Vi)

Next lecture, you’ll learn about the temperature dependence of σ.

1 2

1 2
V V

σ σ∂ ∂
=

∂ ∂
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Next Lecture

• The Second Law of Thermodynamics

• Energy exchange

• General definition of temperature
(not just ideal gases)

• Why heat flows from hot to cold
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Appendix:

Microstate Counting for Identical Particles in Multiple-Occupancy Bins

A picture is worth 1000 words.  Here’s one microstate:

|•••|•|••••||•••••|••|••••|•••|

In this example, there are N=22 particles (the •) and M=8 bins.
There are M-1=7 internal walls (the |).

Note that in this microstate, the 4th bin is empty.

If everything were distinguishable, there would be (N+M-1)! arrangements

of particles and internal walls.  However, we must divide by N!, the number 

of particle permutations, and by (M-1)!, the number of wall permutations 

(because walls are also indistinguishable).

Thus, Ω = (N+M-1)! / (M-1)!N!


