Miscellaneous Notes

- The end is near don't get behind.
- The PHYS 213 final exam times are * 8-10 AM, Friday, Dec. 13
 - * 8-10 AM, Wednesday, Dec. 18

Homework 6 is due <u>Tuesday</u>, Dec. 10 at 8 am. (NO late turn-in).

Course Survey = 2 bonus points (accessible now in ByteShelf)

Lecture 21:

Chemical Equilibria

Reading for this Lecture: Elements Ch 13

Chemical Equilibrium

"Chemical" is a bit of a misnomer. We're describing any process in which things combine (or rearrange) to form new things.

These problems involve reactions like*: $aA + bB \leftrightarrow cC$, where A, B, and C are the particle types and a, b, and c are integers.

In equilibrium the total free energy, *F*, is a minimum. We must have $\Delta F = 0$ when the reaction is in equilibrium, for any reaction that takes us away from equilibrium:

$$\frac{dF}{dN_{A}} = \frac{\partial F}{\partial N_{A}} + \frac{\partial F}{\partial N_{B}} \frac{dN_{B}}{dN_{A}} + \frac{\partial F}{\partial N_{C}} \frac{dN_{C}}{dN_{A}}$$
$$= \frac{\partial F}{\partial N_{A}} + \frac{b}{a} \frac{\partial F}{\partial N_{B}} - \frac{c}{a} \frac{\partial F}{\partial N_{C}}$$
$$using \frac{dN_{A}}{a} = \frac{dN_{B}}{b} = -\frac{dN_{C}}{c}$$
$$= 0$$
Therefore: $a\mu_{A} + b\mu_{B} = c\mu_{C}$

*Obviously we can have more or fewer species.

Chemical Equilibrium (2)

Treating the components as ideal gases or solutes:

 $\mu_i = kT \ln \frac{n_i}{n_{Q_i}} - \Delta_i - \frac{\text{Internal energy}}{\text{per molecule}}$

Plug these chemical potentials into the equilibrium condition, $a\mu_A + b\mu_B = c\mu_C$, and solve for the density ratios:

$$\frac{n_{\rm C}^{\rm c}}{n_{\rm A}^{\rm a} n_{\rm B}^{\rm b}} = K(T), \text{ where } K(T) = \frac{n_{\rm Q_{\rm C}}^{\rm c}}{n_{\rm Q_{\rm A}}^{\rm a} n_{\rm Q_{\rm C}}^{\rm b}} e^{+\Delta/kT} \qquad \Delta \equiv c\Delta_{\rm C} - a\Delta_{\rm A} - b\Delta_{\rm B}$$

K(T) is called the "equilibrium constant".

It depends on Δ 's and T, but not on densities.

This equilibrium condition is a more general version of the law of mass action that you saw before for electrons and holes.

The exact form of the equilibrium condition (how many things in the numerator and denominator, and the exponents) depends on the reaction formula:

 $\begin{array}{c} aA + bB \leftrightarrow cC \\ \text{RHS} \rightarrow \text{numerator} \\ \text{LHS} \rightarrow \text{denominator} \end{array}$

Examples of Chemical Equilibrium

Process

Reaction

Equilibrium condition

Dissociation of H2 moleculesH2 \leftrightarrow 2H) $\mu_{H2} = 2\mu_H$ Ionization of H atoms $(\widehat{H}) \leftrightarrow (\widehat{e}) + (\widehat{p})$ $\mu_H = \mu_e + \mu_p$ Synthesize ammoniaN2 + 3H2 \leftrightarrow 2NH3 $\mu_{N2} + 3\mu_{H2} = \mu_{NH3}$ Dissociation of H₂ molecules General reaction

 $H_2 \leftrightarrow 2(\hat{H})$

 $aA + bB \dots \leftrightarrow cC + dD \dots a\mu_A + b\mu_B \dots = c\mu_C + d\mu_D \dots$

For the monatomic gases (circled) you can use $n_T = n_O$. The others are more complicated, and we won't deal with it here. However, remember that n_{τ} often cancels, so it won't be a problem.

Ideal solutions follow the same general form, but μ isn't close to the ideal monatomic gas value, because interactions in a liquid can be strong, modifying both U and S.

Units and notation: Chemists measure density using units of moles per liter, and write the law of mass action like this:

$$\frac{[C]^c}{[A]^a[B]^b} = K(T)$$

Chemical Equilibrium (3)

Interactions between the particles (*e.g.*, molecules):

In addition to simple PE terms from external fields, there are usually PE terms from interactions between particles (which are not usually ideal gases). Interactions between the molecules can often be neglected. That is, we'll treat the molecules as ideal gases.

Internal energy of each particle (*e.g.*, molecule): Atoms can combine in any of several molecular forms, each of which has a different binding energy. The U term in F includes all those binding energies (which we'll call Δ 's), so they must be included in the µ's. (dF/dN)

The reaction will NOT proceed to completion in either direction, because μ depends on n for each type of molecule. As any one type becomes rare, its μ drops until equilibrium is reached, with some of each type present. (Just as not all air molecules settle into the lower atmosphere.)

But then, in phase transitions, why is usually only ONE stable phase?

Ordinary chemical reaction equilibria:

-At low concentration n_i , μ_i drops without limit (e.g. kTln(n_i/n_T)) until it matches the other μ 's, at some particular ratio.

-Therefore have positive concentrations of *every* possible molecular type. »true at fixed p or at fixed V

• Phase transitions:

-Each phase has a definite density at a given (T,p) and hence a definite μ , regardless of how much is present! -Adding material changes the *volume* of the phase, not the *density*, so μ *doesn't change*.

• Therefore at most (T, p) only ONE phase, with lowest μ , is stable.

–At special (T, p), two can have the same μ , so they can coexist in any ratio. –Under constant V conditions, p, and thus μ , depends on the *amounts* of the phases, and thus there are some coexistence ranges, e.g., in a pressure cooker.

ACT 1: Equilibrium in the Ammonia Reaction

Consider a reaction that is essential to agriculture: the synthesis of ammonia from nitrogen and hydrogen:

 $N_2 + 3 H_2 \leftrightarrow 2 NH_3$

1) Insert the correct superscripts and subscripts in the equilibrium equation:

 $\frac{n_{(-)}^{(-)}n_{(-)}^{(-)}}{n_{(-)}^{(-)}n_{(-)}^{(-)}} = K(T)$

2) Suppose the reaction is in equilibrium. Now double the number of N_2 molecules. What will happen?

A) Make more NH₃. B) Dissociate more NH₃. C) Nothing.

Consider a reaction that is essential to agriculture: the synthesis of ammonia from nitrogen and hydrogen:

 N_2 + 3 H_2 \leftrightarrow 2 NH_3

1) Insert the correct superscripts and subscripts in the equilibrium equation:

$$\frac{n_{(NH_3)}^{(2)}n_{(N_2)}^{(3)}}{n_{(N_2)}^{(1)}n_{(H_2)}^{(3)}} = K(T)$$

Of course, you could write the whole thing upside down, with K'(T) = 1/K(T).

2) Suppose the reaction is in equilibrium. Now double the number of N_2 molecules. What will happen?

A) Make more NH₃. B) Dissociate more NH₃. C) Nothing.

Consider a reaction that is essential to agriculture: the synthesis of ammonia from nitrogen and hydrogen:

 $N_2 + 3 H_2 \leftrightarrow 2 NH_3$

1) Insert the correct superscripts and subscripts in the equilibrium equation:

$$\frac{n_{(NH_3)}^{(2)}n_{(N_2)}^{(3)}}{n_{(N_2)}^{(1)}n_{(H_2)}^{(3)}} = K(T)$$

Of course, you could write the whole thing upside down, with K'(T) = 1/K(T).

2) Suppose the reaction is in equilibrium. Now double the number of N_2 molecules. What will happen?

A) Make more NH₃. B) Dissociate more NH₃. C) Nothing.

You've decreased the density ratio. To restore it, n_{NH3} must increase and/or n_{H2} must decrease. <u>Some</u> of the new N_2 reacts with some of the H_2 , (decreasing n_{H2}), producing more NH_3 (increasing n_{NH3}). There's still some of the new N_2 , i.e., n_{N2} still increases somewhat.

Example: $p + e \leftrightarrow H$ at 6000K

We pick this reaction because each component (proton, electron, hydrogen atom) has no internal modes (except spin, not important here) so we can write down the component μ 's easily, and exactly.

What is the relation between n_p and n_H at T = 6000 K?

We pick this reaction because each component (proton, electron, hydrogen atom) has no internal modes (except spin, not important here) so we can write down the component μ 's easily.

What is the relation between n_p and n_H at T = 6000 K?

Start with the exact equilibrium rule:

Now use that these are almost ideal monatomic components, (as long as the density is low).

So:
$$\left(\frac{n_p}{n_{pQ}}\right)\left(\frac{n_e}{n_{eQ}}\right) = \left(\frac{n_H}{n_{HQ}}\right)e^{-\Lambda/kT}$$

$$n_p^2 = \left(n_{pQ}n_{eQ}\right)\left(\frac{n_H}{n_{HQ}}\right)e^{-\Lambda/kT} \approx n_{eQ}n_He^{-\Lambda/kT}$$

because $n_{pQ} \approx n_{HQ}$

Now use:
$$\Delta = 13.6$$
eV and $n_{eO} = 2x(1.2x10^{27} \text{ m}^{-3})$ at 6000K

$$n_p^2 \approx 10^{16} m^{-3} n_H$$
 at 6000 K

 $\mu_{p} + \mu_{e} = \mu_{H}$ $kT \ln\left(\frac{n_{p}}{n_{pQ}}\right) + kT \ln\left(\frac{n_{e}}{n_{eQ}}\right) = kT \ln\left(\frac{n_{H}}{n_{HQ}}\right) - \Delta$

Also: $n_p = n_e$ \leftarrow because they are produced in pairs.

On the Sun: $\rho \sim \rho_{H2O}$. So, $n_H \sim 6 \times 10^{29}/m^3$.

 \Rightarrow n_p ~ 8 ×10²²/m³, not very large.

Only 1 in 10⁷ ionized.

Lecture 21, p 12

ACT 2

The temperature of the Sun actually varies a great deal, from ~5700K at the surface, to ~10⁷ K in the interior.

- 1) For what <u>approximate</u> temperature will we have $n_p \sim n_H$?
 - A) 10,000 K B) 60,000 K C) 160,000 K D) 6 x 10⁶ K

The temperature of the Sun actually varies a great deal, from ~5700K at the surface, to ~10⁷ K in the interior.

1) For what <u>approximate</u> temperature will we have $n_p \sim n_H$?

A) 10,000 K B) 60,000 K C) 160,000 K D) 6 x 10⁶ K

As a rough estimate, we set $kT = 13.6 \text{ eV} \rightarrow T = 160,000 \text{ K}$

Non-monatomic Gases

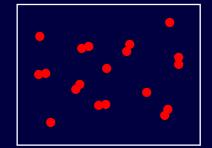
Formation of H_2 from hydrogen atoms:

 $H_2 \leftrightarrow 2H$, so μ_{H2} = $2\mu_H$.

Equilibrium condition:

$$\frac{n_{H_2}}{n_H^2} = K(T)$$
, where $K(T) = \frac{n_{Q_{H_2}}}{n_{Q_H}^2} e^{+\Delta/kT}$

We can use n_{OH}, because it's monatomic.



 $\Delta = H_2$ binding energy = 4 eV T = 1000 K

We don't know how to calculate n_{QH2} , because it's diatomic and has extra U and S.

However, we've already seen the effect that H_2 being diatomic has:

The addition of rotation/vibrational modes must

- increase $n_{Q_{H2}}$ – there are more possible states for the molecule when it could be rotating or vibrating than when it couldn't

- decrease F and μ – if they were not lowered when the molecules rotated, they would not rotate!

What does this do to equilibrium? μ_{H2} is now less than $2\mu_{H}$, so the reaction will proceed in the direction of increasing n_{H2} , until equality is restored.

Act 3: Formation of H_2

We have: $\frac{n_{H_2}}{n_{H_2}^2} = K(T)$

1) What happens to n_{H} if we decrease n_{H2} ?

A) Decrease B) Increase C) Increase, then decrease

2) What happens to n_H/n_{H2} if we decrease n_{H2} ?

A) Decrease B) Increase C) Increase, then decrease

We have: $\frac{n_{H_2}}{n_H^2} = K(T)$

1) What happens to n_{H} if we decrease n_{H2} ?

A) Decrease B) Increase C) Increase, then decrease

Since $n_H \propto \sqrt{n_{H2}}$, decreasing n_{H2} decreases n_H . Makes sense: The overall density is reduced.

2) What happens to n_H/n_{H2} if we decrease n_{H2} ?

A) Decrease B) Increase C) Increase, then decrease

We have: $\frac{n_{H_2}}{n_H^2} = K(T)$

1) What happens to n_{H} if we decrease n_{H2} ?

A) Decrease B) Increase C) Increase, then decrease

Since $n_H \propto \sqrt{n_{H2}}$, decreasing n_{H2} decreases n_H . Makes sense: The overall density is reduced.

2) What happens to n_H/n_{H2} if we decrease n_{H2} ?

A) Decrease B) Increase C) Increase, then decrease

We can also write it like this: $\frac{n_{H_2}^2}{n_H^2} = n_{H_2}K(T) \Rightarrow \frac{n_{H_2}}{n_H} = \sqrt{n_{H_2}K(T)} \Rightarrow \frac{n_H}{n_{H_2}} \propto \frac{1}{\sqrt{n_{H_2}}}$

Thus, decreasing n_{H2} increases the fraction of free atoms.

 $2H \rightarrow H_2$ requires that two atoms meet, while

 $H_2 \rightarrow 2H$ only requires a single molecule.

At low density, the rate of the second process is higher, shifting equilibrium to more H.

At a given T, the fraction of atoms increases at lower molecule density!

There are more H atoms in outer space than H_2 molecules. Why? Two particles (H + H) have more <u>entropy</u> than one particle (H₂). Entropy maximization dominates the tendency of atoms to bind!!!

ACT 4: Oxygen in Solution

1) Consider oxygen dissolving in a liquid. The reaction is $O_{2gas} \leftrightarrow O_{2liquid}$. If you double the air pressure, keeping T constant, what happens to the density of the dissolved O_2 ? (Assume that the liquid itself is unaffected.)

A) Density is halved B) Density is unchanged C) Density is doubled

2) Now consider CO_2 being dissolved according to the approximate reaction: $CO_{2gas} \leftrightarrow CO_{2liquid}$ (here we neglect the chemistry that happens between the CO_2 and water after the dissolving occurs). If we increase the temperature, what will happen to the amount of CO_2 that can be 'kept' in the water?

A) CO_{2liquid} increases B) CO_{2liquid} stays the same C) CO_{2liquid} decreases

1) Consider oxygen dissolving in a liquid. The reaction is $O_{2gas} \leftrightarrow O_{2liquid}$. If you double the air pressure, keeping T constant, what happens to the density of the dissolved O_2 ? (Assume that the liquid itself is unaffected.)

A) Density is halved B) Density is unchanged C) Density is doubled



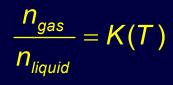
K remains unchanged, so *n_{liquid}* must double.

2) Now consider CO_2 being dissolved according to the approximate reaction: $CO_{2gas} \leftrightarrow CO_{2liquid}$ (here we neglect the chemistry that happens between the CO_2 and water after the dissolving occurs). If we increase the temperature, what will happen to the amount of CO_2 that can be 'kept' in the water?

A) CO_{2liquid} increases B) CO_{2liquid} stays the same C) CO_{2liquid} decreases

1) Consider oxygen dissolving in a liquid. The reaction is $O_{2gas} \leftrightarrow O_{2liquid}$. If you double the air pressure, keeping T constant, what happens to the density of the dissolved O_2 ? (Assume that the liquid itself is unaffected.)

A) Density is halved B) Density is unchanged C) Density is doubled

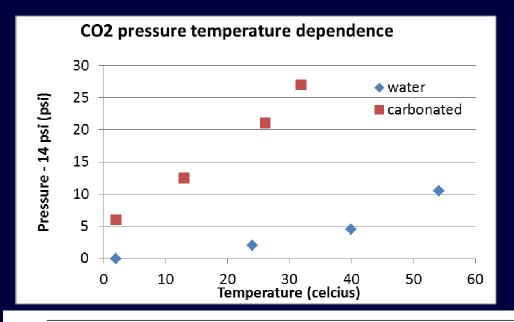


K remains unchanged, so *n_{liquid}* must double.

2) Now consider CO_2 being dissolved according to the approximate reaction: $CO_{2gas} \leftrightarrow CO_{2liquid}$ (here we neglect the chemistry that happens between the CO_2 and water after the dissolving occurs). If we increase the temperature, what will happen to the amount of CO_2 that can be 'kept' in the water?

A) CO_{2liquid} increases B) CO_{2liquid} stays the same C) CO_{2liquid} decreases

The CO_2 has more entropy in the atmosphere than in the water. So at high temperature that's where we find the CO_2 . This means that global warming is doubly bad – it reduces the capacity of the ocean for CO_2 , just when we'd like the ocean to take up more.



Synchronous Change of Atmospheric CO₂ and Antarctic Temperature During the Last Deglacial Warming

F. Parrenin,¹* V. Masson-Delmotte,² P. Köhler,³ D. Raynaud,¹ D. Paillard,² J. Schwander,⁴ C. Barbante,^{5,6} A. Landais,² A. Wegner,³† J. Jouzel²

Understanding the role of atmospheric CO_2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO_2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO_2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO_2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO_2 , as has been suggested by earlier studies.

nalyses of polar ice cores have shown that the concentration of atmospheric CO_2 (aCO₂) and surface air temperature

are closely related and that they have risen and fallen in tandem over most of the past 800,000 years. However, whether changes of temperature

occurred first and he been have been topic sy. The most highly the last deglacial wa from the European I tarctica (EPICA) Do In this record, aCO₂ temperature (AT) by of TI, in agreement Vostok and Taylor I tified a lag of 600 ±

¹Laboratoire de Glaciologi (CNRS/UJF), Grenoble, Fr Climat et de l'Environnen Yvette, France. ³Alfred We Research, Bremerhaven, sity of Bern, Bern, Switzer Sciences, University of Ve Dynamics of Environmenta Venice, Italy.

*Corresponding author. †Present address: Byrd University, Columbus, O