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Lecture 9
Examples and Problems

• Counting microstates of combined systems

• Volume exchange between systems

• Definition of Entropy and its role in equilibrium

• The second law of thermodynamics

• Statistics of energy exchange

• General definition of temperature

• Why heat flows from hot to cold
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Pretend we are playing a coin-tossing game. We will toss 100 pennies 

(all distinguishable) into the air, and there is an equal chance they will 

land on the table or on the floor.  

What is the probability that all 100 pennies will land on the table?

What is the dimensionless entropy associated with the situation that 70 

pennies land on the table, and 30 land on the floor (accounting for the 

fact that each penny can land heads or tails, but ignoring the various 

places on the table or floor that each penny can land)?

Exercise:  Microstates and Entropy
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Pretend we are playing a coin-tossing game. We will toss 100 pennies 

(all distinguishable) into the air, and there is an equal chance they will 

land on the table or on the floor.  

What is the probability that all 100 pennies will land on the table?

What is the dimensionless entropy associated with the situation that 70 

pennies land on the table, and 30 land on the floor (accounting for the 

fact that each penny can land heads or tails, but ignoring the various 

places on the table or floor that each penny can land)?

Exercise:  Microstates and Entropy

P(100 on table) = 0.5100 = 7.9 x 10-31

This is one macrostate, and we want to know how many microstates 

correspond to it.  There are three parts:

1. how many ways to have a 70/30 split:    100!/(70!30!)

2. how many ways for the 70 to be configured:  270

3. how many ways for the 30 to be configured:  230

Therefore: Ω(70 on table) = 100!/(70!30!) 270 230 = 100!/(70!30!) 2100

σ = lnΩ = ln[100!/(70!30!) 2100] = 100 ln 2 + ln(100!) – ln(70!) – ln(30!)
{We’ll see later that ln x! ≈ x ln x – x} � σ = 130
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Summary of Bin Counting

Number of microstates for N objects in M bins:

Unlimited Single N << M
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When the numbers are small, and the whole distribution matters, 

the average and the most likely may not be very close.

Consider 3 particles (A, B, C) in a system with 6 multiple occupancy cells 

partitioned by a movable barrier:

Take NL=1 (particle A)  and NR=2  (particles B and C).  

1) Calculate the entropy for each partition position.

2) What are the most likely and average partition positions?

Note: We are interested in the volume on the left and right, VL and VR,

so we’ll express our answers in terms of them.  VL + VR = 6.

Exercise:  Microstates and Entropy

A

A

BC

B C

A 

BC

Some possible microstates:

1 2 3 4 5
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Worksheet for this problem

ΩL ΩR Ω = ΩLΩR σ = ln(Ω)

VL = 1 1 52 = 25 25 3.22

VL = 2

VL = 3

VL = 4

VL = 5

1 particle on left

2 (distinguishable) on right

multiple-occupancy bins
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Solution

ΩL ΩR Ω = ΩLΩR σ = ln(Ω)

VL = 1 1 52 = 25 25 3.22

VL = 2 2 42 = 16 32 3.47

VL = 3 3 32 = 9 27 3.30

VL = 4 4 22 = 4 16 2.77

VL = 5 5 12 = 1 5 1.61

Ωtot = 105

The most likely VL = 2 .

The average <VL> = (1*25 + 2*32 + 3*27 + 4*16 + 5*5) / 105

= 259/105 = 2.47

1 particle on left

2 (distinguishable) on right

multiple-occupancy bins
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Notice that the most likely position occurs when:

What is the probability, P(2), that VL = 2?

Graph the Results

1
 in this example
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Graph the Results
Most probable VL:

σ = ln(32) = 3.47

1
 in this example

2
L R

L R

N N

V V
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ΩLΩR

VL

Notice that the most likely position occurs when:

What is the probability, P(2), that VL = 2?

32
(2) 30.5%

105
P = =
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If the partition is allowed to move freely, the most likely macrostate occurs at

maximum total entropy, σtot = σL + σR.  This is equivalent to maximizing Ω.

This corresponds to                 not σ1 = σ2.

Entropy will be more convenient to calculate than Ω.

Maximizing the Total Entropy 

1 2

1 2
V V

∂σ ∂σ
=

∂ ∂

σ1 + σ2
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Most likely value of VL
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Maximum σ1+σ2

is where slopes cancel
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Summary

• The total entropy of an isolated system is maximum in equilibrium.

• So if two parts (1 and 2) can exchange V, equilibrium requires:

This is a general equilibrium condition.
A similar relation holds for any
exchanged quantity.

Entropy of an ideal gas:

For N distinguishable particles in volume V: Ω ∝ VN ⇒ σ = NlnV + const

You can’t calculate the constant (that requires quantum mechanics), 

but it drops out of problems where one only needs the entropy change.

For example, if the temperature is constant:

σf - σi = NlnVf - NlnVi = Nln(Vf/Vi)

1 2

1 2
V V

σ σ∂ ∂
=

∂ ∂
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Act 1: Isothermal Expansion
We isothermally compress 1 mole of O2 from 2 liters to 1 liter.  

1. How much does the (dimensionless) entropy of the gas change?

A) 0

B) 6x1023 ln(2)

C) -6x1023 ln(2)

2. How much does the (dimensionless) entropy of the environment

change?

A) 0

B) 6x1023 ln(2)

C) -6x1023 ln(2)
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Solution
We isothermally compress 1 mole of O2 from 2 liters to 1 liter.  

1. How much does the (dimensionless) entropy of the gas change?

A) 0

B) 6x1023 ln(2)

C) -6x1023 ln(2)

2. How much does the (dimensionless) entropy of the environment

change?

A) 0

B) 6x1023 ln(2)

C) -6x1023 ln(2)

There are half as many places for each gas particle:    

Ωi ∝ VN � Ωf ∝ (V/2)N

σf - σi = (NlnVf + const) − (NlnVi + const) = Nln(Vf/Vi)

= NA ln(1/2) = -6x1023 ln 2)

According to the 2nd Law, the entropy of an isolated 

system must stay the same or increase.  

Considering the (gas + environment) as the 

‘system’, the reduction in σgas must be matched by 

an increase in σenv. We will see later that for 

isothermal processes, ∆σtotal = 0 (i.e., they are 

reversible!).
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Act 2: Free Expansion
Now we let the gas ‘free’ expand back to 2 liters. 

How much does the total entropy change?

A) 0

B) 6x1023 ln(2)

C) -6x1023 ln(2)
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Solution
Now we let the gas ‘free’ expand back to 2 liters. 

How much does the total entropy change?

A) 0

B) 6x1023 ln(2)

C) -6x1023 ln(2)

There are twice as many places for each gas particle:    

Ωi ∝ VN � Ωf ∝ (2V)N

σf - σi = (NlnVf + const) − (NlnVi + const) = Nln(Vf/Vi)

= NA ln(2) = 6x1023 ln 2)

This is an isothermal process (why?), but not quasi-static, i.e., 

the gas is not in equilibrium throughout the expansion.  In fact, 

the gas does not interact with the environment at all, so σenv

doesn’t change. 

Because this is an irreversible expansion (the particles will 

never randomly all go back into the 1-liter box!), σtot increases.
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Act 3

A partition separates two equal halves of a container, each 

containing N atoms of He. What is the change in the dimensionless 

entropy after the partition is removed?

A)  ∆σ ~ 0

B) ∆σ = N ln 2

C) ∆σ = 2N ln 2
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Solution (Gibbs Paradox)

Initial entropy final entropy

What did we do wrong?

A partition separates two equal halves of a container, each 

containing N atoms of He. What is the change in the dimensionless 

entropy after the partition is removed?

A)  ∆σ ~ 0

B) ∆σ = N ln 2

C) ∆σ = 2N ln 2

The system before removing the partition is nearly identical to 

the system after removing it, i.e., the number of microstates 

changes very little (there are small fluctuations, fractionally ~1/√N)

Therefore ∆σ ~ 0.  Let’s calculate it (incorrectlyR)
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Gibbs Paradox (2)

• So far we have dealt with situations where the number of particles 

in each subsystem is fixed. Here, after the partition is removed, 

particles can move freely between the two halves.

• To correctly calculate the change in entropy, we must account for 

the fact that the particles are identical.

Initial entropy final entropy

~ 0
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Exercise
Consider a ~1 liter container of N2 at STP. What fractional increase in 

the volume of the box V will double the number of microstates?

1) What is N?  

2) What is Ω?

3) What is Ωf/Ωi? 
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Exercise
Consider a ~1 liter container of N2 at STP. What fractional increase in 

the volume of the box V will double the number of microstates?

1) What is N?  

2) What is Ω?

3) What is Ωf/Ωi? 

At STP, 1 mole of a gas occupies 22.4 liter.  Therefore, in 1 liter there

is N = 1 liter x (6 x 1023/22.4 liter) = 2.7 x 1022

Ω = (nTV)N

Ωf/Ωi = 2 = (nTVf)
N/(nTVi)

N = (Vf/Vi)
N

(Vf/Vi) = 21/N = 2^(3.7x10-23) = 1.0 according to my calculator.

= 1 + 2.56 x 10-23 according to Mathematica

The lesson: the number of microstates increases   

mind-bogglingly fast – that’s why the gas fills the space.
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Entropy, T, and CV

A conventional entropy,  S ≡ k σ, is often used.

Our basic definition of T is then:

S has dimensions energy/temperature (J/K).

For fixed-V processes:

So:

Or:

One can use this to calculate absolute entropy (no arbitrary constants).  
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Exercise: 
A Large Collection of Oscillators

Consider 1024 oscillators at 300 K with ε << kT.

1) What’s CV?

2) If 1 J of U is added, how much does T go up?

3) How much does that 1 J  make σ go up?
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Solution

Consider 1024 oscillators at 300 K with ε << kT.

1) What’s CV?

2) If 1 J of U is added, how much does T go up?

3) How much does that 1 J  make σ go up?

Equipartition holds, so CV = Nk = 13.8 J/K.  

∆T = ∆U / CV = 0.07 K  

dσ/dU = 1/kT

T is almost constant here, so:

∆σ = ∆U/kT = 1 J / (4.2×10-21 J) = 2.4×1020

∆Ω is the exponential of this, a gigantic number.

Note:

∆S = k∆σ = ∆U/T

= 14 J/K
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FYI: Absolute Entropy

There is a natural method to determine absolute entropy (no arbitrary constants).

• At T=0, an object in equilibrium has only one accessible state (maybe two)
(the lowest energy level, or two if there is degeneracy).

⇒ Entropy is ~0 at T=0.

• As T → 0, the entropy falls smoothly to that limit.
This is sometimes called the “Third Law of Thermodynamics”

• So, the absolute S(T) can be calculated by setting S(0) = 0:

This integral does not diverge, because Cv → 0 as T → 0.

• Absolute entropies are computed for many substances.  

For example, SO2(T=25° C, p=1Atm) = 205.04 J/mol.K

http://www.egr.msu.edu/classes/me417/somerton/FCTables.pdf

0
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Example:  Exchanging Energy
Two oscillators, A and B (“solid 1”) with energy level spacing ε share a total of 6 
quanta.  One possible microstate is shown in the figure below.  They are brought 
into contact with four oscillators, C, D, E and F (“solid 2”) which initially share no 
quanta.

1) Initially, what is the entropy of solid 1? Solid 2?

2) If solid 2 is brought into contact with solid 1, what is the total entropy 

after equilibrium is reached?

3) What is the average energy in oscillator A, before and after?

A B C D E F 

5

4

3

2

1

0

Solid 1 Solid 2
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Solution
Two oscillators, A and B (“solid 1”) with energy level spacing ε share a total of 6 
quanta.  One possible microstate is shown in the figure below.  They are brought 
into contact with four oscillators, C, D, E and F (“solid 2”) which initially share no 
quanta.

1) Initially, what is the entropy of solid 1? Solid 2?

2) If solid 2 is brought into contact with solid 1, what is the total entropy

after equilibrium is reached?

3) What is the average energy in oscillator A, before and after?

( )
( )

( )1 1

1 1 2

1 1

1 !
7 1.95 ln 1 0

! 1 !

q N

q N
σ σ

+ −
Ω = = = = =

−
⇒

( )
( )

tot tot

tot tot

tot tot

1 !
462 6.14

! 1 !

q N

q N
σ

+ −
Ω =⇒= =

−

Before: 2 oscillators share 6ε.  <Uav> = 3ε.

After: 6 oscillators share 6ε.  <Uav> =   ε.

A B C D E F 
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1

0

Solid 1 Solid 2
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Consider this situation:

N1 = 3,     N2 = 4 

q = q1 + q2 = 8    (i.e., U = 8ε)

What is the most likely energy for each of the two systems?

Example:  Energy Exchange

U1 U2
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Consider this situation:

N1 = 3,     N2 = 4 

q = q1 + q2 = 8    (i.e., U = 8ε)

What is the most likely energy for each of the two systems?

Solution

( )
( )

1 !

! 1 !

i i

i

i i

q N

q N

+ −
Ω =

−

Most likely macrostate: U1/N1 = 3/3 ≈ U2/N2 = 5/4.  ∼ Equipartition.  N is not large.

U1 U2

I am not going to work it out in detail.  

Here’s a graph of the solution.

Sample calculation: q1=1, q2 = 7.

Use:
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