
 

 

Making Sense of the Equation Sheet 

Physics 213 

Fundamental Laws/Principles: 

First Law:          

Energy is conserved—the change in the internal energy of a system is equal to the heat that flows into or 

out of the system plus the work done on or by the system. 

Second Law:     ⁄    

As a system comes to equilibrium, the entropy of the system plus the environment always increases. In 

equilibrium, the total equilibrium is maximized and does not change in time. 

Dimensionless entropy:                                          

      number of microstates corresponding to the macrostate  ,    probability of observing the 

macrostate  . 

Classical equipartition: Every quadratic degree of freedom has an on average 
 

 
    of thermal energy. 

This is true provided the characteristic thermal energy scale     energy level spacing (e.g.     , 

where   is the harmonic oscillator level spacing.) Translational motion persists to zero temperature, there-

fore equipartition applies at all temperatures. 

Entropy and Temperature: 

Entropy with dimensions of J/K:             

General definition of temperature:  
 

 
 (

  

  
)
   

 

Anytime two systems exchange energy (keeping the volume and the number of each system constant) 

their temperatures become equal. 

-Ideal Gases:  = ½ x (number of [quadratic] degrees of freedom) (d.o.f.) 

Examples: 

Monatomic gas: 3 translational d.o.f. (

Diatomic gas: 3 translational d.o.f. + 2 rotational d.o.f. (

Solid (―Einstein‖): ~3N oscillators  3 translational d.o.f. + 3 vibrational d.o.f. (



 

Work done by a gas in an isothermal expansion (T = constant):                 ⁄   

Relations for an adiabatic process (Q = 0): 

                                      ⁄   

Work done in an adiabatic process:                                  

General expression for the change in entropy when both volume and temperature vary: 

       (    ⁄ )             ⁄   

Spins: 

Binomial distribution:  Applies to probabilistic events with two possible outcomes. Examples include 

coin toss (heads or tails), spins (spin up or spin down), 1-D random walk (step left or step right). If each 

outcome is equally probable, then the number of microstates corresponding to a particular macrostate is 

given by 

 (     )  
  

    (     ) 
 

Where   is the number of coin tosses and the macrostate is specified by    . When   is large, the bino-

mial distribution is approximately given by the Gaussian distribution 

       √
 

  
         

Here,            . For a 1-D random walk   is the displacement away from zero. The probability 

of obtaining a particular macrostate   is               , where         is the total number of 

microstates. 

Spins in a magnetic field: In a magnetic field the magnetic energy of a spin with magnetic moment  ⃗ is 

    ⃗   ⃗⃗. The net magnetic moment for N spins is 

〈 〉            

To calculate probabilities from the Boltzmann distribution, use 

     
    

     

 
 

where Z is the partition function. 

Z: Sum over all states of the Boltzmann factor         



                                             ∑     
      

  

   = degeneracy 

For a spin in a magnetic field  :                  

Probability for the spin to be aligned parallel to the magnetic field:    
     ⁄

 
 

Probability that the spin and field are aligned antiparallel:       
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High-temperature limit: 〈 〉        ⁄ . This relationship is known as the Curie Law. 

 

Simple Harmonic Oscillator (SHO): 

The quantum harmonic oscillator has equally spaced energy levels     , where           and the 

energy level spacing is     ;    Planck‘s constant, and   √  ⁄  is the classical oscillation fre-

quency. 

The probability of the oscillator being in the n
th
 vibrational level is 
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where    ∑         
   . This sum converges to    (       ⁄ )⁄  , giving the following result: 

   (       ⁄ )      ⁄ . 

The average energy is 

〈 〉  ∑       
 
    

 

     ⁄    
. 

When calculating the entropy associated with having q quanta of energy shared among N oscillators, we 

need to find the number of microstates. The corresponding number of microstates is given by 

  
        

        
 

Counting: 

For     use Sterling‘s approximation,             

 

 



Equilibrium: 

When we considered two systems that could exchange volume or energy, we found the equilibrium prop-

erties (pressure, density, temperature) by maximizing the combined entropy of both systems. When we 

consider a small system connected to a large reservoir whose temperature is fixed, then it is more conven-

ient to consider the free energy. This is because the free energy deals only with the entropy and internal 

energy of the small system. In equilibrium, the free energy of the system must be a minimum. In contrast, 

the total entropy of the system plus the environment is a maximum. 

                                         

The free energy per particle is the chemical potential:    (
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Ideal gas chemical potential: 
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where   is the internal energy per particle (in writing -|| we assume this is a binding energy; for other 

situations, e.g., gravitational potential energy, it could be positive),     ⁄  is the density and         

is the quantum density. We can loosely think of    as the minimum volume occupied by a single particle. 

(More precisely, nQ is the quantum mechanically-constrained maximum number of states per volume that 

a particle can be in.) From quantum mechanics, we know that particles are not point-like objects. Instead, 

they have a physical size of order     , referred to as the de Broglie wavelength.      depends on tem-

perature. From dimensional arguments,         , thus           . The correct quantum mechani-

cal result is    (
     

  )
   

.  

Putting in the mass of a proton and T = 300K gives nQ = 10
30

 m
-3

. 

Therefore, we can quickly calculate nQ for any [monatomic] particle of mass m, at temperature T, using 
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We can also calculate the ‗quantum pressure‘ (the pressure one would need to compress a gas so that it 

reached the quantum density, as pQ = kT nQ. 

In all the cases we consider,     , therefore the natural log term in   is negative. Important: this form 

of the quantum density applies to single-component species (e.g. electrons, protons, and monatomic at-

oms). If the species has internal degrees of freedom, such as diatomic molecules with rotational and vibra-

tional modes, this simple form of    does not apply, because there are more possible states.  Neverthe-

less, we know that  will always be lowered by these extra possible states, otherwise the rotations and 

vibrations simply wouldn‘t occur. 

 



Chemical potential and equilibrium: 

In a reaction involving the creation of different types of particles (examples: interstitial-vacancy pairs and 

electron-hole pairs in semiconductors), the equilibrium condition is given by 

∑        

 

   

where     refers to the number of particles of type   involved in the reaction. As an example, consider the 

chemical reaction 

          

where A, B and C refer to the particle type, and a, b, and c are the number of each type. From the general 

form of the equilibrium condition 

            

If we treat each species as an ideal gas, liquid, or solid, then 

  
 

  
    

   
   
 

   
     

        

where               . 

For the case of a semi-conductor, electrons and holes are created at the same time: 

       , so that:                 
         

              
 . 

Here ni is the ―intrinsic‖ density of electrons (and holes) at a particular temperature.  We can also dope 

the material by substituting in atoms that either give extra free electrons (‗donors‘), or give extra holes 

(electron ‗acceptors‘).  The total density will then be, e.g.,  ne = ni + nD. 

Phase transitions: 

If work is done while reaching equilibrium, then it is the Gibbs free energy which is minimized. 

                                 

In phase transitions, the volume between the two different phases is often different, for example consider 

a molecule of water going between the liquid and gas phase. We can express the Gibbs free energy in-

volving different phases as 

                    

where the subscripts         refer to solid, liquid, and gas, respectively. In equilibrium, the phase with the 

lowest chemical potential is the stable phase. By maximizing the number of particles corresponding to the 

phase with the lowest  ,   is minimized. 



 

Thermal Radiation 

Thermal-radiation power per unit area radiated by a black body (units     ):          
  

    = Stefan-Boltzmann constant 

    emissivity. The emissivity of an object must equal its absorptivity. Hence,     for a perfect ―black 

body‖ and is between 0 and 1 for all other materials. 

Wien‘s displacement law:                   – Describes the location of the wavelength peak in the 

black-body spectrum as a function of temperature.  

 


