Lecture 16

Equilibrium and Chemical Potential

Free Energy and Chemical Potential

Simple defects in solids

Reference for this Lecture: Reference for Lecture 17:

Elements Ch 11 Elements Ch 12
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Converting Chemical Fuels into Work

Here’s a table of free energy for some fuels: (what you get when you burn them)

Fuel Free Energy http://en.wikipedia.org/wiki/Alcohol_fuel#Methanol_and_ethanol

Methanol 18 MJ / liter Note:
Ethanol 24 MJ / liter Ethanol has less free energy

_ _ per liter than gasoline does.
crealie £19 W) ¥ e You'll get worse mileage.

Problem: &

If you could convert the free energy of gas perfectly into work, how many miles
per gallon would your car achieve? (Wow, can we really do this problem? Sure:)

Solution:

We need to know how much work it takes to drive the car 1 mile.
Obviously that depends on a number of factors:

speed, tire friction, wind resistance, etc.

Actually a simple experiment can give us the answer Question to ponder:

Determine the decelerating force! Work = force x distance. Why don’t the tables of

free energy mention T_?
e — Force
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oo Gas Mileage S

Fortunately for us, Professor Kwiat did the experiment:

‘| find that when | depress the clutch at 65 mph, my car slows to 55 mph
in 10 seconds. (Av~ 5 m/s)” 1 mph=0.45m/s

Force of wind and friction = m AV/At = (2000 kg)(5 m/s)/(10 sec) = 1000 N.
Work to drive 1 mile = (1000 N)(1600 m) = 1.6 MJ (megajoules).

If the free energy of gas were converted perfectly into work, he would need
1.6 MJ / (33 MJ / liter) = 0.048 liters = 0.011 gallons of fuel.

Therefore, if his car were powered by a perfect Carnot engine,
he could expect ~90 miles per gallon!

The typical gasoline engine achieves about half of the ideal Carnot efficiency
so this is not a bad estimate. (en.wikipedia.org/wiki/Internal_combustion_engine#Energy_efficiency)

(This calculation is pretty crude. The purpose is to demonstrate that
Free Energy applies to physics, chemistry and engineering.)

Lecture 16,p 3




Free Energy, Equilibrium and Chemical Potential

Last time: Free energy Fgs = Ugs — Treservoirosys

This is the maximum available work we can get from a system that is connected to a
reservoir (environment) at temperature T, .ccrvoir-

Equilibrium corresponds to maximum S, = S,ecervoir T Ssmall system-
When we calculate AS, we only need to know the temperature of the reservoir. In
minimizing F (equivalent to maximizing S,,;) we don’t have to deal explicitly with S, .cvoir -

Consider exchange of material (particles) between two containers.
These are two small systems in equilibrium with a reservoir
(not shown) at temperature T. In equilibrium, dF/dN, = 0:

dF _dR  dF, _dR df _,

dN, dN, dN, dN, dN,

dF, dF,

N, dN,

The derivative of free energy with respect to particle number is
so important that we define a special name and symbol for it:

U = 3% The chemical potential of subsystem

i

(134
I

For two subsystems exchanging particles, the equilibrium condition is: My = L

Maximum Total Entropy — Minimum Free Energy — Equal chemical potentials T ol




Why Bother with Yet Another Definition?

Answer:
It makes the various equilibrium conditions look the same:

Exchange of:

e \Volume: 8 = S
av, dV,

e Energy: do, _do,
du, du,

The two systems can exchange
C”:1 sz volume, energy, or particles.

dN, N, "

e Particles:

Why does the last equation use dF/dn, instead of do/dN? Remember that there
is a thermal reservoir (not shown). When particles are exchanged, the
reservoir's entropy might change. (It might gain or lose energy.) That's what F
takes care of.
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Equilibrium and Chemical Potential

Recall the situation when systems can exchange energy. The definition of
temperature: 1/T = dS/dU (holding V and N fixed) tells us that temperatures
are equal in thermal equilibrium. Otherwise we could increase S by
exchanging some energy.

We also know what happens when the systems are out of equilibrium
(unequal T). Because high T means a small derivative,
energy flows from the hot system to the cold one.

Let’s look at the situation when we have particle exchange.

From the definition of chemical potential, we have already 1 5_F
seen that in thermal and particle equilibrium, the chemical ON

potentials are equal: n, = p,.

Out of equilibrium (u, > p,):
The larger u system has a larger dF/dN, so
particles flow from high p to low p.

ener
1 particles 2

F

Note that du/dN (= d2F/dN?) must be positive, ~_

or equilibrium isn’t stable. | N
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The Path Ahead...

Having considered thermal equilibrium when volume and energy exchanged,
now we’ll consider systems in which particles can be exchanged (or “created”).

Minimization of total free energy will allow us to understand a wide variety of
different physical processes.

Some examples:
Particles can move from place to place.
Particles can combine into new types (e.g., chemical reactions).
This will lead to the concept of “chemical equilibrium”.
And lots and lots of applications...

Let’s start with a concrete example.
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weme. Defects in Crystal Lattices

e 6 0 O i
i ® 80y et
e ®© 0 O X

® 06 O O ® 0O . vacancy

In a perfect crystal at low temperatures, the atoms are arranged on a lattice
like the one shown at the left. Consider M atoms on lattice sites, where M is a
very large number, about 1022 for a mm-sized crystal.

As the crystal is heated up the atoms jiggle around, and some atoms will
jump to “interstitial” sites, leaving a “vacancy” behind.

There is an energy cost A to form each interstitial-vacancy pair (“I-V pair”) like
the one shown above, i.e., there is an energy difference A between an |-V pair
and a normally occupied site.

By minimizing the Free energy of N ‘I-V pairs’, we will calculate the average
number of defects that form at a temperature T.
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ACT 1

As we let the temperature of the solid — O,
what fraction of the atoms will sit at the interstitial sites?

a) none b) half c) all
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Solution

As we let the temperature of the solid — 0,
what fraction of the atoms will sit at the interstitial sites?

a) none b) half c) all

Because it costs energy to create an interstitial-vacancy pair, at low

temperature the decrease in F due to entropy gain (increasing the
number of available sites) will be smaller than the increase in F due to

the energy cost. Therefore, the free energy will be minimized by
“staying at home”.

F=U-TS

As T — 0, the TS term
becomes unimportant
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Defects in Crystal Lattices (2)

Suppose we have M possible vacancy sites, and M possible interstitial sites
(essentially one per atom).

We want to know N, the number of interstitial-vacancy pairs at temperature T.

We want to minimize F(N) as a function of N. Call F(0)=0 for convenience.
F(IN)=U(N)-TS(N)
UN)=N A

How to calculate S(N) ?

Need energy A Assume the crystal’s vibrational

for each entropy is not much changed by

interstitial- making an interstitial. S is then

vacancy pair due to the number of places
each vacancy could be, and the
number of places each interstitial
could be.
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Defects in Crystal Lattices (3)

Perfect lattice Lattice with a Defect

e 06 0 O

® O © ‘ ~ interstitial

o Teo%

" vacancy
Entropy of |-V pair: S(N)=kInQ

# ways to put N identical particles in M cells = MN/N! (single occupancy, dilute limit)
But there is no correlation between the position of a vacancy and the position of
an interstitial. Therefore, the total number of accessible states Q = Q,Q,, =(MN/N!)2.

2
] = 2k(NInM -InN!)
N!

Entropy:  S(N)=kInQ = kln(

Free energy: F(N)=U(N)-TS(N)=NA-2kT (NInM -InN!)

In equilibrium:
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Stirling's Approximation

It will often be necessary to calculate d(In N!)/dN.
WEe'll use a well known approximation for N!, known as
Stirling’s Approximation”:

In N!'~ N InN - N

Try some numbers:
N In N! ~ N InN
10 15.1 = 23.0
50 148.5 ~ 195.6
1000 ? ~ 6908

d \V The derivative

- _(N InN =N is only defined
dN N

for large N.

This is not Robert Stirling (“Stirling engine”) but James Stirling, Scottish mathematician.
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Defects in Crystal Lattices (4)

By minimizing the Free energy of N interstitial-vacancy pairs, we determine
the average number of defects that form at temperature T:

(from a F(N) U(N)—TS(N):NA—2kT(NInM—InN!)

previous slide)

Minimize F: Z—Z: A—=2kTInM+2kTInN :A—2kT(|n%):O

N This looks like a
2kT(In—)=-A _ g~A/2kT| Boltzmann factor:

M an exponential
temperature dependence.

Solve for the fraction N/M
= # defects + laftice sites:

i
M

n= N = pair density
with

As we predicted before, as T - 0 the M _
fraction of interstitial-vacancy pairs is =1~ cell density

exponentially suppressed. Notice the 2 in the Boltzmann factor. It

came from squaring the (MN/N!) number of
positional states, because there are 2
movable objects, vacancy and interstitial.
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Act 2

We just saw the fraction of interstitial-vacancy pairs is given by M =

1. Suppose the energy cost to create such a pairis 1 eV. If we
want to keep the fraction of vacancies less than 1%, what is the
maximum temperature T,,, we should heat the material to?

a) 100 °C b) 1000 °C c) 10,000 °C

2. Suppose that for some reason the vacancy and interstitial sites were always
right next to each other. How would this ‘safe’ temperature T,,, change?

a) T,,, will decrease b) T,,, Will increase c) T,o, Will stay the same
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Solution

We just saw the fraction of interstitial-vacancy pairs is given by M =

1. Suppose the energy cost to create such a pairis 1 eV. If we
want to keep the fraction of vacancies less than 1%, what is the
maximum temperature T,,, we should heat the material to?

a) 100 °C b) 1000 °C c) 10,000 °C

= —In(0.01) = 4.6 Interpretation: As we
1% raise the temperature
A2 0.5eV higher, the material is
—T. = - =1264 K | '
"~ 4.6k 4.6(8.6x10°eV/K) literally coming apart.

2. Suppose that for some reason the vacancy and interstitial sites were always
right next to each other. How would this ‘safe’ temperature T,,, change?

a) T,,, will decrease b) T,,, Will increase c) T,o, Will stay the same
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Solution

We just saw the fraction of interstitial-vacancy pairs is given by M =

1. Suppose the energy cost to create such a pairis 1 eV. If we
want to keep the fraction of vacancies less than 1%, what is the
maximum temperature T,,, we should heat the material to?

a) 100 °C b) 1000 °C c) 10,000 °C

A ~In(0.01) = 4.6 Interpretation: As we

1% raise the temperature
Al2 0.5eV higher, the material is

T. = = =1264 K -
%~ 4 6k 4.6(8.6x10°eV/K) literally coming apart.

2. Suppose that for some reason the vacancy and interstitial sites were always
right next to each other. How would this ‘safe’ temperature T,,, change?

a) T,,, will decrease b) T,,, Will increase c) T,o, Will stay the same

The 2 in the Boltzman factor came from the fact that the vacancy sites and
interstitial locations were independent. If instead their locations are correlated, the

allowable temperature will essentially double.
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Related Example: Solid "Solutions”

000000000000000000

A ““.’.“....““‘ B Important for real devices
0000000000000 00000 e.g., silicon-gold, tin-lead
0.00000‘0000000000

In equilibrium, some A atoms are in the B crystal and vice versa.
Assume:

There are M “A” sites, N of which are occupied by “B” atoms. N << M.
The only entropy is due to site counting (ignore vibrations, etc.)
The energy increase when a “B” goes to an “A” site is A.

Let’s call the chemical potential of the B atoms in their own crystal O, by
choosing a convenient zero for energy. Then, in equilibrium, the chemical
potential of the B’s in A must also be zero:

_ ou oS M—-N

) :A—kTM(———J.SoJHV«mA:!!:e%%
oN|,; oN|,,  oN|,, N M

p=0=
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Next Time

Applications of free energy

Semiconductors

Law of atmospheres, revisited
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Free Energy, Equilibrium and Chemical Potential

Last time: Free energy F = U, — T O

reservoir — sys

This is the maximum available work we can get from a system that is
connected to a reservoir (environment) at temperature T, .o

Equilibrium corresponds to maximum S, , = S .+ S

reservoir small system*

We saw that minimizing F is equivalent to maximizing S,,, but with the
advantage that we don’t have to deal explicitly with S

reservoir *

©o
Consider now two small systems in equilibrium with a reservoir 060
(not shown) at temperature T. Thermal equilibrium at temperature N
T is given by minimizing total free energy, F = F, + F.:

5w+ T2 a0

aN,” ' o\,

The derivative of free energy with respect to particle number is
so important that we define a special name and symbol for it:

(1 ”

H; = dWI The chemical potential of subsystem “i

Equilibrium condition:  |AF = AN, + 1,AN, =0
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