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Lecture 8

The Second Law of Thermodynamics;
Energy Exchange

• The second law of thermodynamics

• Statistics of energy exchange

• General definition of temperature

• Why heat flows from hot to cold

Reading for this Lecture:

Elements Ch 7

Reading for Lecture 10: 

Elements Ch 8
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• Counting microstates of combined systems

• Volume exchange between systems

• Definition of Entropy and its role in equilibrium

Last Time
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Quick Review:
The Scope of Thermodynamics

• When an isolated system can explore some number, Ω, of microstates 

the microstates are equally likely.

• The probability that you observe macrostate A is: PA = ΩA/ΩAll, 
i.e., the fraction of all the microstates that look like A.

Entropy:

• The entropy of a system is ln(Ω), where Ω counts all possible states.

Therefore, PA is proportional to eσA, since σA = ln(ΩA).

• For a big system, the entropy of the most likely macrostate, σA, 

is not much less than the total entropy, σAll.

Example: 106 spins: σAll = ln(2106) = 106 ln(2) = 693147

σ5×105 up = ln(106! / 5×105! 5×105!) = 693140

Thermodynamics applies to systems that are big enough so that this is true.

Question: What is the probability that in a system of 106 spins, exactly 5×105 will be pointing up?
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0
d

dt

σ
>

0
d

dt

σ
≥The Entropy of an isolated system can only increase 

(or remain constant) as a function of time.

The Second Law of Thermodynamics

This is a consequence of  probability.

• Macroscopic systems have very sharply 

peaked probability distributions 

(much sharper than shown here).

• If x is initially far from its most likely position, xe , then it will 

evolve towards xe (where most of the microstates are).

• If x is initially near its most likely position, xe , then it will 

remain there. σ has its maximum value.

• All available microstates are equally likely, but in big systems 

the vast majority of them correspond to very similar macrostates

(e.g., about 50% spin up).

Macroscopic quantity, x 

(e.g., position of partition)

xe

Ω
(or σ)

0
d

dt

σ
=
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Lessons from Volume Exchange

You learned last lecture: 
When the system consists of independent parts:

The number of states of the whole was the product of the 

number of states of the parts.

We define entropy to be the ln(# microstates).

For a big system in equilibrium we almost certainly see 

the macrostate that maximizes ΩTOT (or σTOT).

To determine equilibrium, maximize the total entropy

by maximizing the sum of the entropies of the parts.

If the parts can exchange volume:

In equilibrium each part must have the same 

derivative of its entropy with respect to its volume.

This argument doesn’t rely on the parts 

being the same (or even similar).

Now use the same principle for systems that 

exchange ENERGY

TOT 1 2

TOT 1 2

ln( )

Ω = Ω Ω

σ ≡ Ω

σ = σ + σ

1 2

1 2

holding other properties fixed.

∂ ∂
=

∂ ∂V V

σ σ

1 2

1 2

holding other properties fixed.

∂ ∂
=

∂ ∂U U

σ σ
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Model System for Energy Exchange:
Simple Harmonic Oscillator (SHO)

To make the mathematics simple we use a system with discrete, 

equally-spaced energy levels, En = n.ε, where n = 1,2,3 G (quantum #)

These are the energy levels for a mass on a spring:

This system was studied in P214.  All you need to know is

the energy level formula (En = nε).

The SHO is an exact description of photons, and a very good

description of vibrations of atoms in solids (= “phonons”).

Our notation convention:

E = energy of a single oscillator 

U = internal energy of a multi-oscillator system

m

κ

1
f hf, where h is Planck's constant

2 m

κ
= ε =

π

Note to 214 folks:

We drop the 0.5ε
for convenience,

since only energy 

differences matter.

∞

4ε

3ε

2ε

1ε

0ε
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Terminology for HW, Lab, etc.

1-D Einstein Solid: 

A collection of N oscillators in 1 dimension.

3-D Einstein Solid: 

A collection of N atoms each oscillating in 

3 dimensions: 3N oscillators

We’ll assume that each oscillator has the same frequency

(i.e., we ignore the frequency dependence of the “normal modes”).
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ACT 1: Energy Exchange

Two oscillators exchange energy. The total energy is U = 4ε.

That is: E1 = n1ε, E2 = n2 ε, where n1+n2 = 4.

What is the total number of microstates?

A) 4 B) 5 C) 6 D) 7 E) 8

E1 E2

0

1

2

3

4

ε
ε
ε
ε

q = 4

In general we say U = qε, 

where q is the number of 

energy quanta.

Osc1  Osc2

Here’s one microstate.
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Solution

Two oscillators exchange energy. The total energy is U = 4ε.

That is: E1 = n1 ε, E2 = n2 ε, where n1+n2 = 4.

What is the total number of microstates?

A) 4 B) 5 C) 6 D) 7 E) 8

E1 E2

0

1

2

3

4

ε
ε
ε
ε

q = 4

In general we say U = qε, 

where q is the number of 

energy quanta.

Osc1  Osc2
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Exercise
Energy exchange between 3 oscillators

Three oscillators have total energy U = 2ε.  (q = 2)  Find Ω.

n, ℓ, m are integers (n + ℓ + m = 2)

Oscillator  #1   #2    #3

mn E  E  E ℓ

5ε

4ε

3ε

2ε

1ε

0ε

n

m

E n

E

E m

= ε

= ε

= ε
ℓ
ℓ
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Solution

Three oscillators have total energy U = 2ε.  (q = 2)  Find Ω.

n, ℓ, m are integers (n + ℓ + m = 2)

Oscillator  #1   #2    #3

mn E  E  E ℓ

n

m

E n

E

E m

= ε

= ε

= ε
ℓ
ℓ

5ε

4ε

3ε

2ε

1ε

0ε

En = 0

En = 1

En = 2
Ω = 6
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Probability of observing energy En

What is the probability that oscillator #1 has energy 0, ε, or 2ε?

Look at the solution to the exercise.

Probability that oscillator #1 has energy 0ε: P0 = 3/6 = 1/2

Probability that oscillator #1 has energy 1ε: P1 = 2/6 = 1/3

Probability that oscillator #1 has energy 2ε: P2 = 1/6

Why does Pn decrease as En increases?

This is an important general feature of energy 

distributions in thermal equilibrium.

We’ll discuss it more next week.

1.0

0.5

0.0

Pn

En

0ε 1ε 2ε
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ACT 2: Average energies

In an example with 2ε in 3 SHOs, what would be the average
thermal energy U1 in the first SHO?

A) 0 B) ε/3 C) 2ε/3 D) ε E) 2ε
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Solution

In an example with 2ε in 3 SHOs, what would be the average
thermal energy U1 in the first SHO?

A) 0 B) ε/3 C) 2ε/3 D) ε E) 2ε

We can calculate it using the probabilities:

<U1> = P(E0)E0 + P(E1)E1 + P(E2)E2

= ½ * 0     + 1/3 * ε + 1/6 * 2ε = 2/3ε

Of course, there’s an easier way:

All three oscillators are the same, so they each must have,

on average 1/3 of the total energy.

As in the previous example, the most likely energy (0) is

not the average energy.
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Home Exercise

For a system of 3 oscillators with U = 3ε, 

Plot Pn, the probability that oscillator #1 has energy En = nε.

Can you state in words why Pn decreases with increasing En?

It is very important that you understand this.

Pn

En0ε 1ε 2ε 3ε

1
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This is the same as the formula for N identical particles in M bins.*

Particles Energy

N particles q energy quanta

M bins N oscillators

The q energy quanta are identical (indistinguishable) “particles”.

The N oscillators are multiple-occupancy “bins” for those quanta.

*See the derivation in last lecture’s Appendix. 

Relief from Counting

The general formula for the number of microstates in a system of N 

oscillators sharing q energy quanta:

(q N 1)!

(N 1)!(q)!

+ −
Ω =

−
We’ll call it the “q-formula”. 

Beware !!!
N means different things

in the two situations.
(sorry for the notation)
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How Ω depends on U

Use the q-formula:

• For a 2-SHO system,  N=2, Ω = q+1.

• For N=3, here’s Ω for q = 0, 1, 2, 3, 4:

ΩΩΩΩ
20

10

6

3

1

0    1    2    3    4

15

For N=3:

Ω = (q+2)(q+1)/2

∝ q2 when q is large.

q    ΩΩΩΩ

0        10        10        10        1

1        31        31        31        3

2        62        62        62        6

3        103        103        103        10

4        154        154        154        15 q

In general, Ω ∝ UN-1 for N oscillators when q >> N (or, U >> Nε).

Note: This happens when the average energy per oscillator, U/N,

is much larger than the energy spacing, ε.

Remember:

U = qε
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Thermal Equilibrium between 2 
large hot systems

This expression for thermal equilibrium was obtained 

by maximizing the entropy subject to a constraint.

The result is very similar to the one for volume 

exchange (see last lecture’s summary slide). 

Its form results from the sharing of some quantity 

among systems. We’ll see other examples.

U10 Ueq Utot- U1

σσσσtot

σσσσ2

σσσσ1

Assume the systems are large (N >> 1), so that we can take derivatives.

Calculate Ueq by maximizing σtot as we vary U1: (keeping U1+U2 = Utot)

σ ∂σ ∂σ
= + =

∂ ∂

= −

∂σ ∂σ
− =

∂ ∂

∂σ ∂σ
=

∂ ∂

tot 1 2 2

1 1 1 2

1 2

1 2

1 2

1 2

1 2

We know:

d dU
0

dU U dU U

 dU dU

0
U U

U U

Note:

We are holding V constant.

That’s the reason for the partial derivative.

σ is a function of both U and V.
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General Definition of Temperature

Let’s use the energy sharing result to write a more general definition of temperature

that does not assume equipartition which (as we’ll see soon) is not always valid.  

Recall that equipartition is needed for the ideal gas law, pV = NkT, so the new 

definition will free us from relying on ideal gases to measure temperature.

Start with the energy sharing result: In thermal equilibrium:

Define the absolute temperature T:

By definition, T1 = T2 in equilibrium.  That’s nice, but to be useful it must give other 

results that we all know and love.  For example:

• Out of equilibrium, heat flows from hot to cold.

• Under everyday conditions (large objects, not near absolute zero) we have

equipartition of energy: U = ½kT for each energy mode.

V

1

kT U

 ∂σ
≡  ∂ 

1 2

1 2
U U

∂σ ∂σ
=

∂ ∂
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Act 2: σ and T

We previously saw that for a large collection 

of harmonic oscillators, Ω ∝ UN-1 ~UN , so 

that σ = Nln U + const., as shown here.

Which point corresponds to a higher 

temperature?

A) T1 > T2

B) T1 = T2

C) T1 < T2

U

σ

T1 T2
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Solution

We previously saw that for a large collection 

of harmonic oscillators, Ω ∝ UN-1 ~UN , so 

that σ = Nln U + const., as shown here.

Which point corresponds to a higher 

temperature?

A) T1 > T2

B) T1 = T2

C) T1 < T2

By definition, so whereever the slope is biggest, 

the temperature must be smallest. This makes sense: if we add 

energy to a system that is at very low temperature (e.g., T1), it will 

have a much bigger effect on the entropy than if the system is at a 

higher temperature (and already quite disordered).

U

σ

T1 T2

V

1

kT U

 ∂σ
≡  ∂ 
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Act 2: Heat Flow

Consider the entropies of two systems 

in thermal contact.  System 1 starts with 

internal energy U1i > Ueq.

1. Which direction will energy flow?

A) From 1 to 2

B) From 2 to 1

C) Neither (no flow)

2. Which system has a higher initial temperature?

A) System 1

B) System 2

C) Neither (equal temperatures)

σ2

σ1

σ1+ σ2

U1i
Utot

U1

σ

Ueq
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Solution

Consider the entropies of two systems 

in thermal contact.  System 1 starts with 

internal energy U1i > Ueq.

1. Which direction will energy flow?

A) From 1 to 2

B) From 2 to 1

C) Neither (no flow)

The two systems will evolve toward the white dots, as shown.

U1 decreases.  Heat flows until σ1 + σ2 is a maximum.

σ2

σ1

σ1+ σ2

U1i
Utot

U1

σ

Ueq
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Solution

Consider the entropies of two systems 

in thermal contact.  System 1 starts with 

internal energy U1i > Ueq.

1. Which direction will energy flow?

A) From 1 to 2

B) From 2 to 1

C) Neither (no flow)

2. Which system has a higher initial temperature?

A) System 1

B) System 2

C) Neither (equal temperatures)
The temperature is inversely proportional to the slope (dσ/dU).

Therefore (look at the graph) T1i > T2i.

σ2

σ1

σ1+ σ2

U1i
Utot

U1

σ

Ueq



Lecture 8, p 25

Why Heat Flow from Hot to Cold 
Is Irreversible

Isolated systems evolve toward the macrostate that 

has maximum total entropy (maximum probability).

Almost all the probability is very near to the 

equilibrium macrostate, so once equilibrium is 

reached, it is very unlikely that the system will go         

anywhere else.

The age of the universe is short compared to how 

long you’d have to wait for the energy to re-separate!

If we prepare an isolated system out of equilibrium,

the system will irreversibly adjust itself to:
T1  >   T2

T1  =   T2
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What about Equipartition?
Equipartition holds for everyday phenomena.  In this situation, U >> Nε.

That is, each oscillator (atom, or something similar) has many energy quanta, 

because q = U/ε >> N.

Large objects also have N >> 1:  N-1 ~ N.  

(We don’t actually need this approximation, but it makes the math simpler, 

since <U> = Umost likely.)

We want to verify that our new definition of temperature agrees with the usual 

one (which is based on the ideal gas law) in the everyday regime. In particular, 

we want to verify that equipartition holds, in which case the ideal gas formulas 

for specific heat, etc. will work out. 

Let’s consider harmonic oscillators, 

because we know how to do the calculation.  Recall:

Therefore:
( ) ( )

( )
1 !

,
! 1 ! !

+ −
Ω = ≈

−

Nq N q
N q

q N N

( ) ( )
( )

ln ln const

ln const'

σ = Ω ∝ +

σ ∝ +

N q

N U

Using the above approximations

The constant contains 

(among other things) 

the volume dependence.

σ

U
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Equipartition (2)

Now calculate the temperature of N oscillators that have internal energy U:

Thus, U = NkT.  Equipartition holds if q >> N.

Here’s a more practical way to write the q >> N condition:

U = qε >> Nε, or U/N >> ε.  Therefore, kT = U/N >> ε.

Equipartition holds if the thermal energy, kT, 

is much larger than the energy spacing, ε.

Equipartition fails at low temperatures.

We’ll study this phenomenon later.

∂σ ∂ +
= = =

∂ ∂
1 ( ln( ) ')N U const N

kT U U U
The constant doesn’t 

depend on U, so its   

partial derivative is zero.
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Entropy, T, and CV

A conventional entropy,  S ≡ k σ, is often used.

Our basic definition of T is then:

S has dimensions energy/temperature (J/K).

For fixed-V processes:

So:

Or:

One can use this to calculate absolute entropy (no arbitrary constants).  

1

V

S

T U

 ∂
≡  

∂ 

( ) ( )
( )

( ) ( )
( )

0

0

V

V V V

0

0

S S U C
=  

TT U T

f

f

T

V
f

T

T

V
f

T

C T
S T S T dT

T

C T
T T dT

kT
σ σ

∂ ∂ ∂      ≡     ∂ ∂ ∂     

′
′− =

′

′
′− =

′

∫

∫
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Next Week

• The Boltzmann factor (and applications)

• What happens when equipartition fails?


