Lecture 8

The Second Law of Thermodynamics;
Energy Exchange

The second law of thermodynamics
Statistics of energy exchange
General definition of temperature

Why heat flows from hot to cold

Reading for this Lecture: Reading for Lecture 10:
Elements Ch 7 Elements Ch 8

Lecture 8, p 1




Last Time

Counting microstates of combined systems
Volume exchange between systems

Definition of Entropy and its role in equilibrium
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Quick Review:
The Scope of Thermodynamics

When an isolated system can explore some number, Q, of microstates
the microstates are equally likely.

The probability that you observe macrostate A is: P, = Q,/Q,,
I.e., the fraction of all the microstates that look like A.

Entropy:

The entropy of a system is In(€2), where Q2 counts all possible states.
Therefore, P, is proportional to e, since o, = In(€2,).

For a big system, the entropy of the most likely macrostate, c,,
is not much less than the total entropy, o4

Example: 106 spins: o, = In(21%°) = 108 In(2) = 693147
Osrosup = IN(1091/ 5x 105! 5x108!) = 693140

Thermodynamics applies to systems that are big enough so that this is true.

Question: What is the probability that in a system of 10° spins, exactly 5x10° will be pointing up?
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The Second Law of Thermodynamics

The Entropy of an isolated system can only increase
(or remain constant) as a function of time.

) 4
(or o)
Macroscopic systems have very sharply Macroscopic quantity, X
peaked probability distributions | (e.g., position of partition)
(much sharper than shown here). '

This is a consequence of probability.

If x is initially far from its most likely position, x, , then it will
evolve towards x, (where most of the microstates are).

If X is initially near its most likely position, x, , then it will
remain there. ¢ has its maximum value.

All available microstates are equally likely, but in big systems
the vast majority of them correspond to very similar macrostates

(e.g., about 50% spin up).
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Lessons from Volume Exchange

You learned last lecture:
When the system consists of independent parts:

The number of states of the whole was the product of the
number of states of the parts. Qror = 2L,

We define entropy to be the In(# microstates). c =In(Q)

For a big system in equilibrium we almost certainly see O1or = 04 T 0,
the macrostate that maximizes Q.5 (or o1o7)-

To determine equilibrium, maximize the total entropy
by maximizing the sum of the entropies of the parts.

If the parts can exchange volume:
In equilibrium each part must have the same

derivative of its entropy with respect to its volume. oV, 0V,
holding other properties fixed.

do, 00,

This argument doesn’t rely on the parts

being the same (or even similar).
do, 0o,

Now use the same principle for systems that ou, aU,
exchange ENERGY holding other properties fixed.
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Model System for Energy Exchange:
Simple Harmonic Oscillator (SHO)

To make the mathematics simple we use a system with discrete,
equally-spaced energy levels, E, =n &, where n =1,2,3 ... (Quantum #)

These are the energy levels for a mass on a spring:

f L = ¢ = hf, where h is Planck's constant

~2n\m

K

This system was studied in P214. All you need to know is

the energy level formula (E, = ng). Note to 214 folks:
We drop the 0.5 ¢
for convenience,

The SHO is an exact description of photons, and a very good since only energy
description of vibrations of atoms in solids (= “phonons”). SIEIEERE MR

Our notation convention:
E = energy of a single oscillator

U = internal energy of a multi-oscillator system
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Terminology for HW, Lab, etc.

1-D Einstein Solid:

A collection of N oscillators in 1 dimension. /V\/\'(\/\/\'\/W

3-D Einstein Solid:
A collection of N atoms each oscillating in
3 dimensions: 3N oscillators

We’'ll assume that each oscillator has the same frequency

(i.e., we ignore the frequency dependence of the “normal modes”).
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ACT 1: Energy Exchange

Two oscillators exchange energy. The total energy is U = 4e.

P — - + —
That '?- E;=ne E,=n,e, Wh.ere ny+n, = 4. In general we say U = g,
What is the total number of microstates? where q is the number of

energy quanta.
C)6 D)7 E)8

Here’s one microstate.

o
Osc1 Osc2
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Solution

Two oscillators exchange energy. The total energy is U = 4e.
P — — + —
That '?- E,=ny¢e E;=nye, Wh.ere n;+n, = 4. In general we say U = g,
What is the total number of microstates? where q is the number of
energy quanta.

o —
Osc1 Osc2
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Exercise

Energy exchange between 3 oscillators

Three oscillators have total energy U = 2¢. (9 =2) Find Q.

o€
4¢
3¢
2¢
1¢

O¢
Oscillator #1 #2 #3

E =ne
E, =/¢
E. =meg

n, £, m are integers (n + / + m = 2)
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Solution

Three oscillators have total energy U = 2¢. (g = 2)

o€
4¢
3¢
2¢
1¢

O¢
Oscillator #1 #2 #3

E. =ne
E, =/l¢
E. =meg

I I I I N

‘IIIII?EIIII:
ENEREI I AREN
N AN SRR

O
®

1T 1 T 17
I I I IR
1T 1T 1T 17

n, £, m are integers (n + / + m = 2)
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Probability of observing energy E,

What is the probability that oscillator #1 has energy 0, €, or 2¢7?

Look at the solution to the exercise.

Probability that oscillator #1 has energy Os: P, = 3/6 = 1/2
Probability that oscillator #1 has energy 1e: P, =2/6 =1/3
Probability that oscillator #1 has energy 2¢: P, =1/6

A

1.0 Why does P, decrease as E,, increases?

0.5 This is an important general feature of energy
0.0 distributions in thermal equilibrium.

We’'ll discuss it more next week.
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ACT 2: Average energies

In an example with 2e in 3 SHOs, what would be the average
thermal energy U, in the first SHO?

A)O B)e/3 C)2¢/3 D) e E) 2¢
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Solution

In an example with 2e in 3 SHOs, what would be the average
thermal energy U, in the first SHO?

A)O B)e/3 | C)2¢/3 D) e E) 2¢

We can calculate it using the probabilities:

<U,> =P(Ey)E, + P(E,)E, + P(E,)E,
=%*0 +1/3*e +1/6*2e=2/3¢
Of course, there’s an easier way:

All three oscillators are the same, so they each must have,
on average 1/3 of the total energy.

As in the previous example, the most likely energy (0) is
not the average energy.
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Home Exercise

For a system of 3 oscillators with U = 3¢,
Plot P,, the probability that oscillator #1 has energy E_ = ne.

, P

n

| | | |
Oe 1e¢ 2¢ 3¢ E,

[
»

Can you state in words why P decreases with increasing E_?
It is very important that you understand this.
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Relief from Counting

The general formula for the number of microstates in a system of N
oscillators sharing q energy quanta:

(g+N-1)!

= WEe'll call it the “g-formula”.

~ (N=1))(q)!

This is the same as the formula for N identical particles in M bins.*

Particles Energy Beware !
N particles <> qenergy quanta N means different things

: - in the two situations.
M bins <——> N oscillators (sorry for the notation)

The q energy quanta are identical (indistinguishable) “particles”.
The N oscillators are multiple-occupancy “bins” for those quanta.

*See the derivation in last lecture’s Appendix. Lecture 8. p 16




How Q depends on U

Use the g-formula:
For a 2-SHO system, N=2, Q = g+1.
For N=3, here’'s Qforq=0, 1, 2, 3, 4:

Remember:
U=qe

For N=3:
Q = (q+2)(q+1)/2

oc g2 when qis large.

0O 1 2 3 4

In general, Q o« UN-T for N oscillators when g >> N (or, U >> N ¢).

Note: This happens when the average energy per oscillator, U/N,
iIs much larger than the energy spacing, «.
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Thermal Equilibrium between 2
large hot systems

Assume the systems are large (N >> 1), so that we can take derivatives.

Calculate U,, by maximizing o, as we vary U,: (keeping U,;+U, = U,

do,, _ do, N dU, oo,
du, ou, dU, ou,
We know: dU, = -dU,
oo, 0o,

oU, au,

acy1 . 862 This expression for thermal equilibrium was obtained
@U _ aU by maximizing the entropy subject to a constraint.
1 2 The result is very similar to the one for volume
exchange (see last lecture’s summary slide).
Note: Its form results from the sharing of some quantity

We are holding V constant. among systems. We'll see other examples.
That’s the reason for the partial derivative.
o is a function of both U and V. Lecture 8, p 18




General Definition of Temperature

Let’s use the energy sharing result to write a more general definition of temperature
that does not assume equipartition which (as we’ll see soon) is not always valid.
Recall that equipartition is needed for the ideal gas law, pV = NKT, so the new
definition will free us from relying on ideal gases to measure temperature.

0c, 0o,

U, ~ au,

Start with the energy sharing result: In thermal equilibrium:

| 1 0o
Define the absolute temperature T: =
Vv

kT |ou

By definition, T, = T, in equilibrium. That’s nice, but to be useful it must give other
results that we all know and love. For example:

Out of equilibrium, heat flows from hot to cold.

Under everyday conditions (large objects, not near absolute zero) we have
equipartition of energy: U = 72KT for each energy mode.
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Act2:0and T

We previously saw that for a large collection
of harmonic oscillators, Q o«« UN1~UN 'so
that o = NIn U + const., as shown here.

Which point corresponds to a higher
temperature?

A)T,>T,

B)T,=T,

C)T,<T,
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Solution

We previously saw that for a large collection
of harmonic oscillators, Q o«« UN1~UN 'so
that o = NIn U + const., as shown here.

Which point corresponds to a higher
temperature?

A) Ty > T,
B)T,=T,
C)T,<T,

1 0o
By definition, | T = oU so whereever the slope is biggest,

the temperature must be smallest. This makes sense: if we add
energy to a system that is at very low temperature (e.g., T,), it will
have a much bigger effect on the entropy than if the system is at a
higher temperature (and already quite disordered).
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Act 2. Heat Flow

Consider the entropies of two systems
in thermal contact. System 1 starts with
internal energy U;; > U,

1. Which direction will energy flow?

A) From 1 to 2
B) From 2 to 1
C) Neither (no flow)

2. Which system has a higher initial temperature?

A) System 1
B) System 2
C) Neither (equal temperatures)
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Solution

Consider the entropies of two systems
in thermal contact. System 1 starts with
internal energy U;; > U,

1. Which direction will energy flow?

A) From 1 to 2
B) From 2 to 1
C) Neither (no flow)

The two systems will evolve toward the white dots, as shown.
U, decreases. Heat flows until 6, + o, is a maximum.
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Solution

Consider the entropies of two systems
in thermal contact. System 1 starts with
internal energy U;; > U,

1. Which direction will energy flow?

A) From 1 to 2
B) From 2 to 1
C) Neither (no flow)

2. Which system has a higher initial temperature?

A) System 1

B) System 2

C) Neither (equal temperatures)
The temperature is inversely proportional to the slope (do/dU).
Therefore (look at the graph) T,, > T,
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Why Heat Flow from Hot to Cold
Is Irreversible

If we prepare an isolated system out of equilibrium,

the system will irreversibly adjust itself to:

Isolated systems evolve toward the macrostate that
has maximum total entropy (maximum probability).

Almost all the probability is very near to the
equilibrium macrostate, so once equilibrium is
reached, it is very unlikely that the system will go
anywhere else.

The age of the universe is short compared to how
long you’d have to wait for the energy to re-separate!

Ui

U,

Utot
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What about Equipartition?

Equipartition holds for everyday phenomena. In this situation, U >> Ne.
That is, each oscillator (atom, or something similar) has many energy quanta,
because g = U/e >> N.

Large objects also have N >> 1. N-1 ~N.

(We don’t actually need this approximation, but it makes the math simpler,

since <U> = U st likely-)

We want to verify that our new definition of temperature agrees with the usual
one (which is based on the ideal gas law) in the everyday regime. In particular,
we want to verify that equipartition holds, in which case the ideal gas formulas
for specific heat, etc. will work out.

Using the above approximations

(q+N-1)! v g"
g (N=1)l NI

Let’s consider harmonic oscillators,
because we know how to do the calculation. Recall: Q(nN,q)=
Therefore:

o =In(Q) « NIn(q)+ const

o o NIn(U) + const'

The constant contains g
(among other things) v
the volume dependence.
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Equipartition (2)

Now calculate the temperature of N oscillators that have internal energy U:
1 0o O(NIn(U)+const') N

T = oU = U U The constant doesn’t

depend on U, so its
partial derivative is zero.

Thus, U = NKT. Equipartition holds if g >> N.

Here’'s a more practical way to write the q >> N condition:

U = qge >> Ng, or U/N >> ¢. Therefore, kT = U/N >> ¢,

Equipartition holds if the thermal energy, kT,
is much larger than the energy spacing, .

Equipartition fails at low temperatures.
We'll study this phenomenon later.
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Entropy, T, and C,

A conventional entropy, S =Kk o, is often used.

Our basic definition of T is then: > 1 ( 0S j
%

ou

S has dimensions energy/temperature (J/K). T

For fixed-V processes:

=)l o

\Y

One can use this to calculate absolute entropy (no arbitrary constants).
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Next Week

The Boltzmann factor (and applications)

What happens when equipartition fails?

Lecture 8, p 29




