Lecture 13
Heat Engines

- Thermodynamic processes and entropy
- Thermodynamic cycles
- Extracting work from heat
 - How do we define engine efficiency?
 - Carnot cycle: the best possible efficiency

Reading for this Lecture:
Elements Ch 4D-F

Reading for Lecture 14:
Elements Ch 10
A Review of Some Thermodynamic Processes of an Ideal Gas

We will assume ideal gases in our treatment of heat engines, because that simplifies the calculations.

Isochoric (constant volume)

\[W_{by} = \int p\,dV = 0 \]
\[\Delta U = \alpha Nk \Delta T = \alpha V \Delta p \]
\[Q = \Delta U \]

Isobaric (constant pressure)

\[W_{by} = \int p\,dV = p\Delta V \]
\[\Delta U = \alpha Nk \Delta T = \alpha p \Delta V \]
\[Q = \Delta U + W_{by} = (\alpha + 1)p\Delta V \]
Review (2)

Isothermal (constant temperature)

\[W_{by} = \int_{V_1}^{V_2} pdV = \int_{V_1}^{V_2} \frac{NkT}{V} dV = NkT \ln \left(\frac{V_2}{V_1} \right) \]

\[\Delta U = 0 \]

\[Q = W_{by} \]

Adiabatic (no heat flow)

\[W_{by} = - \Delta U \]

\[\Delta U = \alpha Nk (T_2 - T_1) = \alpha (p_2 V_2 - p_1 V_1) \]

\[Q = 0 \]
A closed cycle is one in which the system returns to the initial state. (same p, V, and T) For example:

- U is a state function. Therefore: $\Delta U = 0$
- The net work is the enclosed area. $W = \int p\,dV \neq 0$
- Energy is conserved (1st Law): $Q = W \neq 0$

Though of course we could use any curves to make a closed cycle, here we will consider isochoric, isobaric, isothermal, and adiabatic processes.

This is the reason that neither W nor Q is a state function. It makes no sense to talk about a state having a certain amount of W.

Closed cycles will form the basis of our heat engine discussion.
One of the primary applications of thermodynamics is to **Turn heat into work**.

The standard heat engine works on a cyclic process:

1. **extract heat** from a hot reservoir,
2. **perform work**, using some of the extracted heat,
3. **dump unused heat** into a cold reservoir (often the environment).
4. **repeat** over and over. We represent this process with a diagram:

\[
Q_h = Q_c + W_{by}
\]

A “reservoir” is a large body whose temperature doesn’t change when it absorbs or gives up heat.

For heat engines we will define \(Q_h\), \(Q_c\), and \(W_{by}\) as positive.
A Simple Heat Engine: the Stirling Cycle

Two reservoirs: T_h and T_c.
Four processes: Two isotherms and two isochors
The net work during one cycle: The area of the “parallelogram”.

Two reservoirs: T_h and T_c.
Four processes: Two isotherms and two isochors
The net work during one cycle: The area of the “parallelogram”.
The Stirling Cycle (2)

1) Isochoric
Gas temperature increases at constant volume (piston can’t move)

2) Isothermal
Gas expands at constant T_h

3) Isochoric
Gas temperature decreases at constant volume (piston can’t move)

4) Isothermal
Gas is compressed at constant T_c

We don’t describe the mechanical parts that move the gas cylinder back and forth between the reservoirs.

The cycle goes around like this.
How Does this Engine Do Work?

Look at the two isothermal processes (2 and 4) on the previous slide.

Process 2: expanding gas does W_2 on the piston, as it expands from V_a to V_b.
Process 4: contracting gas is done W_4 by the piston, as it contracts from V_b to V_a.

If $W_2 > W_4$, the net work is positive.
This is true, because the contracting gas is colder (\Rightarrow lower pressure).

During one cycle:
- The hot reservoir has lost some energy ($Q_h = Q_{h1} + Q_{h2}$).
- The cold reservoir has gained some energy ($Q_c = Q_{c3} + Q_{c4}$).
- The engine (the gas cylinder) has neither gained nor lost energy.

The energy to do work comes from the hot reservoir, not from the engine itself.

The net work done by the engine is:

$$W_{by} = W_2 - W_4 = Q_h - Q_c = Q_{h2} - Q_{c4}$$

Not all of the energy taken from the hot reservoir becomes useful work. Some is lost into the cold reservoir. We would like to make Q_c as small as possible.
On the last slide, why did we write $Q_h - Q_c = Q_{h2} - Q_{c4}$? What happened to Q_{h1} and Q_{c3}? (since $Q_h = Q_{h1} + Q_{h2}$, and $Q_c = Q_{c1} + Q_{c2}$)

a) They both = 0.
b) They are not = 0, but they cancel.
c) They average to zero over many cycles.
On the last slide, why did we write $Q_h - Q_c = Q_{h2} - Q_{c4}$? What happened to Q_{h1} and Q_{c3}? (since $Q_h = Q_{h1} + Q_{h2}$, and $Q_c = Q_{c1} + Q_{c2}$)

a) They both = 0.

b) They are not = 0, but they cancel.

c) They average to zero over many cycles.

They cancel, because the amount of heat needed to raise the temperature from T_c to T_h at constant volume equals the amount of heat needed to lower the temperature from T_h to T_c at constant volume*, even though $V_a \neq V_b$.

*Note: This is only valid for ideal gases. C_V is only independent of V for an ideal gas.
Heat Engine Efficiency

We pay for the heat input, Q_h, so:

Define the efficiency

$$\varepsilon \equiv \frac{\text{work done by the engine}}{\text{heat extracted from reservoir}} = \frac{\text{results}}{\text{cost}}$$

$$\varepsilon \equiv \frac{W_{by}}{Q_h} = \frac{Q_h - Q_c}{Q_h} = 1 - \frac{Q_c}{Q_h}$$

Valid for all heat engines. (Conservation of energy)

What’s the best we can do?

The Second Law will tell us.

Cartoon picture of a heat engine:

- Hot reservoir at T_h
- Cold reservoir at T_c

Remember:
We define Q_h and Q_c as positive.
The arrows define direction of flow.
Review

Entropy in Macroscopic Systems

Traditional thermodynamic entropy: \(S = k \ln \Omega = k\sigma \)

We want to calculate \(S \) from macrostate information (\(p, V, T, U, N, \text{ etc.} \)).

Start with the definition of temperature in terms of entropy:

\[
\frac{1}{kT} \equiv \left(\frac{\partial \sigma}{\partial U} \right)_{V,N}, \quad \text{or} \quad \frac{1}{T} \equiv \left(\frac{\partial S}{\partial U} \right)_{V,N}
\]

The entropy changes when \(T \) changes: (We’re keeping \(V \) and \(N \) fixed.)

\[
dS = \frac{dU}{T} = \frac{C_V dT}{T} \implies \Delta S = \int_{T_1}^{T_2} \frac{C_V dT}{T}
\]

If \(C_V \) is constant:

\[
= C_V \int_{T_1}^{T_2} \frac{dT}{T} = C_V \ln \left(\frac{T_2}{T_1} \right)
\]
Entropy in Quasi-static Heat Flow

When V is constant: $dS \equiv dU/T = dQ/T$ \iff $W = 0$, so $dU = dQ$

In fact, $dS = dQ/T$ during any reversible (quasi-static) process, even if V changes.

The reason: In a reversible process, S_{tot} (system plus environment) doesn't change:

$$0 = dS_{\text{sys}} + dS_{E} \quad \Delta S_{\text{tot}} = 0 \text{ if process is reversible.}$$

$$= dS_{\text{sys}} + \frac{dU_{E}}{T} \quad \text{The reservoir is supplying (or absorbing) heat.}$$

$$= dS_{\text{sys}} - \frac{dQ}{T} \quad \text{The reservoir’s energy gain is the system’s heat loss. That’s how they interact.}$$

$$dS = \frac{dQ}{T}, \text{ or } \Delta S = \int_{\text{init}}^{\text{final}} \frac{dQ}{T} \quad \text{for any reversible process}$$
Delta S in Isothermal Processes

Suppose V & p change but T doesn’t.

Work is done (dW_{by} = pdV).
Heat must enter to keep T constant: dQ = dU + dW_{by}.
So:

\[dS = \frac{dQ}{T} = \frac{dU + dW_{by}}{T} = \frac{dU + pdV}{T} \]

Special case, ideal gas:
For an ideal gas, if dT = 0, then dU = 0.

\[dS = \frac{pdV}{T} = \frac{NkTdV}{VT} = \frac{NkdV}{V} \]

\[\Delta S = \int_{V_1}^{V_2} \frac{NkdV}{V} = Nk \ln \left(\frac{V_2}{V_1} \right) \]

Remember: This holds for quasi-static processes, in which the system remains near thermal equilibrium at all times.
Quasi-static Adiabatic Processes

Q = 0 (definition of an adiabatic process)
V and T both change as the applied pressure changes.
For example, if p increases (compress the system):
- V decreases, and the associated S also decreases.
- T increases, and the associated S also increases.

These two effects must exactly cancel !!

Why? Because:
- This is a reversible process, so \(S_{\text{tot}} = 0 \).
- No other entropy is changing.
 (\(Q = 0 \), and \(W_{\text{by}} \) just moves the piston.)

So, in a quasi-static adiabatic process, \(\Delta S = 0 \).

Note: We did not assume that the system is an ideal gas. This is a general result.
Heat Engine Efficiency

We pay for the heat input, Q_h, so:

Define the efficiency

$$\varepsilon = \frac{\text{work done by the engine}}{\text{heat extracted from reservoir}} = \frac{\text{results}}{\text{cost}}$$

$$\varepsilon = \frac{W_{by}}{Q_h} = \frac{Q_h - Q_c}{Q_h} = 1 - \frac{Q_c}{Q_h}$$

Valid for all heat engines. (Conservation of energy)

What’s the best we can do?

The Second Law will tell us.

Cartoon picture of a heat engine:

- Hot reservoir at T_h
- Cold reservoir at T_c

Remember:
We define Q_h and Q_c as positive.
The arrows define direction of flow.
The 2nd Law Sets the Maximum Efficiency (1)

\[\Delta S_{tot} \geq 0 \]

How to calculate \(\Delta S_{tot} \)?

Over one cycle:

\[\Delta S_{tot} = \Delta S_{engine} + \Delta S_{hot} + \Delta S_{cold} = 0 \]

Remember:
\(Q_h \) is the heat taken from the hot reservoir, so
\[\Delta S_{hot} = -\frac{Q_h}{T_h} \]
\(Q_c \) is the heat added to the cold reservoir, so
\[\Delta S_{cold} = +\frac{Q_c}{T_c} \]

\[\Delta S_{tot} = -\frac{Q_H}{T_H} + \frac{Q_C}{T_C} \geq 0 \quad \text{2nd Law} \]

\[\frac{Q_C}{Q_H} \geq \frac{T_C}{T_H} \]

From the definition of \(T \)

\(Q_c \) cannot be zero.
Some energy is always lost.
The 2nd Law Sets the Maximum Efficiency (2)

\[\text{efficiency} = \varepsilon = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H} \]

\[\frac{Q_C}{Q_H} \geq \frac{T_C}{T_H} \]

\[\Rightarrow \varepsilon \leq 1 - \frac{T_C}{T_H} \]

This is a universal law!! (equivalent to the 2nd law)

It is valid for any procedure that converts thermal energy into work. We did not assume any special properties (\textit{e.g.}, ideal gas) of the material in the derivation.

The maximum possible efficiency, \(\varepsilon_{\text{Carnot}} = 1 - \frac{T_C}{T_H} \), is called the Carnot efficiency. The statement that heat engines have a maximum efficiency was the first expression of the 2nd law, by Sadi Carnot in 1824.
How Efficient Can an Engine be?

Consider an engine that uses steam ($T_h = 100° C$) as the hot reservoir and ice ($T_c = 0° C$) as the cold reservoir. How efficient can this engine be?

The Carnot efficiency is

$$\varepsilon_{\text{Carnot}} = 1 - \frac{T_c}{T_H} = 1 - \frac{273 \text{ K}}{373 \text{ K}} = 0.27$$

Therefore, an engine that operates between these two temperatures can, at best, turn only 27% of the steam’s heat energy into useful work.

Question: How might we design an engine that has higher efficiency?

Answer: By increasing T_h. (That’s more practical than lowering T_c.)

Electrical power plants and race cars obtain better performance by operating at a much higher T_h.

When Is ε Less than $\varepsilon_{\text{Carnot}}$?

We can write the efficiency loss in terms of the change of total entropy:

$$\Delta S_{\text{tot}} = -\frac{Q_H}{T_H} + \frac{Q_C}{T_C} = -\frac{Q_H}{T_H} + \frac{Q_H - W}{T_C}$$

$$\Rightarrow W = Q_H \left(1 - \frac{T_C}{T_H}\right) - T_C \Delta S_{\text{tot}}$$

$$\varepsilon \equiv \frac{W}{Q_H} = \left(1 - \frac{T_C}{T_H}\right) - \frac{T_C \Delta S_{\text{tot}}}{Q_H}$$

Lesson: Avoid irreversible processes.
(ones that increase S_{tot}).
- direct heat flow from hot to cold
- free expansion (far from equilibrium)
- sliding friction

Lecture 13, p 20
Entropy-increasing processes are irreversible, because the reverse processes would reduce entropy.

Examples:
- Free-expansion (actually, any particle flow between regions of different density)
- Heat flow between two systems with different temperatures.

Consider the four processes of interest here:
- Isothermal: Heat flow but no T difference. Reversible
- Adiabatic: $Q = 0$. No heat flow at all. Reversible
- Isochoric & Isobaric: Heat flow between different T’s. Irreversible (Assuming that there are only two reservoirs.)

Reversible Irreversible
Act 2: Stirling Efficiency

Will our Stirling engine achieve Carnot efficiency?

a) Yes b) No
Will our Stirling engine achieve Carnot efficiency?

- a) Yes
- b) No

Processes 1 and 3 are irreversible. (isochoric heating and cooling)

1: Cold gas touches hot reservoir.
3: Hot gas touches cold reservoir.
To achieve Carnot efficiency, we must replace the isochors (irreversible) with reversible processes. Let’s use adiabatic processes, as shown:

Processes 1 and 3 are now adiabatic. Processes 2 and 4 are still isothermal.

This cycle is reversible, which means:

\[S_{\text{tot}} \text{ remains constant: } \Rightarrow \varepsilon = \varepsilon_{\text{Carnot}}. \]

This thermal cycle is called the Carnot cycle, and an engine that implements it is called a Carnot heat engine.
Total work done by the gas is the sum of steps 2 and 4:

\[
W_2 = \int_{V_a}^{V_b} p\,dV = NkT_h \int_{V_a}^{V_b} \frac{dV}{V} = NkT_h \ln \left(\frac{V_b}{V_a} \right)
\]

\[
W_4 = \int_{V_b}^{V_a} p\,dV = NkT_c \int_{V_b}^{V_a} \frac{dV}{V} = -NkT_c \ln \left(\frac{V_b}{V_a} \right)
\]

\[
W_{by} = W_2 + W_4 = Nk(T_h - T_c) \ln \left(\frac{V_b}{V_a} \right)
\]

We need a temperature difference if we want to get work out of the engine.
Heat extracted from the hot reservoir, exhausted to cold reservoir:

\[Q_h = Q_1 + Q_2 = \alpha N k (T_h - T_c) + N k T_h \ln \left(\frac{V_b}{V_a} \right) \]

\[-Q_c = Q_3 + Q_4 = -\alpha N k (T_h - T_c) - N k T_c \ln \left(\frac{V_b}{V_a} \right) \]

Solution

Area enclosed:
\[W_{by} = \int p \, dV \]
Solution

Let’s put in some numbers:

\[V_b = 2V_a \]
\[\alpha = 3/2 \quad \text{(monatomic gas)} \]
\[T_h = 373K \quad \text{(boiling water)} \]
\[T_c = 273K \quad \text{(ice water)} \]

\[\varepsilon \equiv \frac{W_{by}}{Q_h} = \frac{(T_h - T_c) \ln \left(\frac{V_b}{V_a} \right)}{\frac{3}{2}(T_h - T_c) + T_h \ln \left(\frac{V_b}{V_a} \right)} \]
\[= \frac{100(0.69)}{150 + 373(0.69)} = 16.9\% \]

For comparison:

\[\varepsilon_{\text{carnot}} = 1 - 273/373 = 26.8\% \]
Heat Engine Summary

For all cycles:

$$\varepsilon = 1 - \frac{Q_c}{Q_h}$$

Some energy is dumped into the cold reservoir.

For the Carnot cycle:

$$\frac{Q_c}{Q_h} = \frac{T_c}{T_h}$$

Q_c cannot be reduced to zero.

Carnot (best) efficiency:

$$\varepsilon_{\text{Carnot}} = 1 - \frac{T_c}{T_h}$$

Only for reversible cycles.

Carnot engines are an idealization - impossible to realize. They require very slow processes, and perfect insulation. When there's a net entropy increase, the efficiency is reduced:

$$\varepsilon = \varepsilon_{\text{Carnot}} - \frac{T_C \Delta S_{\text{tot}}}{Q_H}$$
Next Time

Heat Pumps
Refrigerators,
Available Work and Free Energy