
Lecture 11, p 1

• Elasticity of a Polymer

• Heat capacities

CV of molecules – for real !! 

When equipartition fails

Lecture 11

Applying Boltzmann Statistics

Reading for this Lecture:

Elements Ch 8
Reading for Lecture 12:

Elements Ch 9
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Last time: Boltzmann Distribution

If we have a system that is coupled to a heat reservoir at temperature T:

• The entropy of the reservoir decreases when the small system extracts 

energy En from it.

• Therefore, this will be less likely (fewer microstates).

• The probability for the small system to be in a particular state with energy 

En is given by the Boltzmann factor:

where,                            to make Ptot = 1.  

Z is called the “partition function”.
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Two-state Systems in General 
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This behavior will be exactly the same for every 

“two-state system” with the same ∆E. 
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Consider a two-state system with an energy 

difference ∆E between the two states.

How do the occupation probabilities 

of the states vary with T?

The low energy state is preferentially 

occupied at low T, but the states 

approach equal occupancy at high T. 

∆E
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Summary: Collection of Spins

We used the Boltzmann factor (and remembering that the sum of the probabilities 

is always 1) to tell us the probabilities of each of the two energy states of a single 

magnetic moment in a magnetic field.

In a collection, the average number pointing up (or down) is just N times the 

probability:

Nup = NPup, and Ndown = NPdown

Using these averages, we can calculate 

macroscopic properties:

• total magnetic moment, M

• internal energy, U

• heat capacity, CB
• entropy, S
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Supplement: Internal Energy of
a Collection of Spins

Recall how to calculate the internal energy U:

U = NuEu +NdEd = -(Nu-Nd)µB

= -NµB tanh(µB/kT)

What does this look like as a function of T?

Edown

Eup

B
�

Low T (kT << µB):

Boltzmann factor ~ 0. 

All spins are stuck in low energy state.

U = NEup = -µBN, independent of T

High T (kT >> µB):
Boltzmann factor approaches 1.

Almost equal numbers in the up and down states.

U ≈ (N/2)(Eup+Edown) = 0, independent of T

2 4 6 8 kT/µB
U/µBN

0

-0.5

-1.0

Eup = -Edown = -µB
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We now have U(T), for fixed B, so we can get the heat capacity, CB (at 
constant B), by taking  ∂U/∂T.

For kT << µB, CB vanishes, because all are stuck in “ground state”.

For kT >> µB, C vanishes, because the 
probabilities of the two states each 
approach 0.5, and cease to depend on T.

A collection of 2-state spins does not behave anything like an ideal gas.

1 2 3  kT/µB

CB/kN

Supplement: Heat Capacity of
a Collection of Spins
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� Polymers play a major role in society.

� In 1930, Wallace Carothers (PhD UIUC, 1924) et. al at DuPont 

invent neoprene.

� In 1935 Carothers goes on to invent nylon – “the miracle fiber”

(but commits suicide in 1937, just before it’s importance is 

realized).  In WWII, nylon production was directed to making 

parachute canopies.

� Rubber also played a major role in WWII.  You need rubber for 

tires, gas masks, plane gaskets, etc.

• In 1941 our access to 90% of the rubber-producing countries was cut off 

by the Japanese attack on Pearl Harbor.

• What to do?  Make synthetic rubber.  Who did it first?

• Carl “Speed” Marvel, UIUC!

� Today, “plastics” are used for many, many, many things.

� Other polymers of note: cellulose, proteins, DNA, Q

On the importance of polymersOn the importance of polymers��
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Statistical Mechanics of a Polymer

A polymer is a molecular chain (e.g., rubber), consisting 

of many parts linked together.  The joints are flexible.  

Here we consider a simple (i.e., crude) model of a polymer, to 

understand one aspect of some of them.

Consider a weight hanging from a chain.  Each link 

has length a, and can only point up or down.  Thus,

it’s a system containing “2-state” components.  

This is similar to the spin problem.

Each link has two energy states:

The reason is that when a link flips from 

down to up, the weight rises by 2a.
(We ignore the weight of the chain itself.)

In the molecular version of this experiment, 

the weight is replaced by an atomic force instrument.

Weight

L
a

w = mg

∆E = 2aw
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Act 1 

Suppose our  polymer has 30 segments, each of length a.  

Each segment can be oriented up or down.

1) What is the chain length of the minimum entropy state?

a) L = 30a b) L = 0 c) 0 < L < 30a

2) What is the minimum entropy of the chain?

a) σmin = 0 b) σmin = 1 c) σmin = ln30

w = mg
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Solution

Suppose our  polymer has 30 segments, each of length a.  

Each segment can be oriented up or down.

1) What is the chain length of the minimum entropy state?

a) L = 30a b) L = 0 c) 0 < L < 30a

2) What is the minimum entropy of the chain?

a) σmin = 0 b) σmin = 1 c) σmin = ln30

The minimum entropy state has the fewest 

microstates or arrangements of the links.

The minimum entropy state (with L=30a)

has only one microstate.

w = mg
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The solution is mathematically the same as the spin system with the 
substitution µB wa.

The average length of the rubber band is (compare with magnetization result):

The average energy is:

As the polymer stretches, its entropy decreases, and the reservoir’s 

entropy increases (because UR increases).  

The maximum total entropy occurs at an intermediate length

(not at L=0 or L=Na), where the two effects cancel.

Question: What happens when you heat the rubber band?

tanh
wa

L Na
kT

 = ⋅  
 

-E w L=

N = # segments,             

a = segment length 

w = mg

The Equilibrium Length  
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Act 2

Suppose we rapidly stretch the rubber band.  

1) The entropy of the segment configurations will

a) decrease b) remain the same c) increase

2) The temperature will

a) decrease b) remain the same c) increase
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Solution

Suppose we rapidly stretch the rubber band.  

1) The entropy of the segment configurations will

a) decrease b) remain the same c) increase

2) The temperature will

a) decrease b) remain the same c) increase

The minimum entropy state has the fewest 

microstates or arrangements of the links, 

i.e., the extended chain.
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Solution

Suppose we rapidly stretch the rubber band.  

1) The entropy of the segment configurations will

a) decrease b) remain the same c) increase

2) The temperature will

a) decrease b) remain the same c) increase

The minimum entropy state has the fewest 

microstates or arrangements of the links, 

i.e., the extended chain.

Why is that ???



Lecture 11, p 15

Because we are stretching the band rapidly, 

this is an example of an adiabatic process:

Q = 0 = ∆U - Won � ∆U = Won

Stretching the band does work on it, so U increases.

The links themselves have no U, so 

the energy goes into the usual kinetic energy (vibrational) modes

� T increases.

This is similar to adiabatically compressing an ideal gas (cf. 

‘firestarter’ demo). 

Act 2 Discussion

We often used dWon = -pdV. 

You could redo all the thermal physics, instead 

for elastic materials, using dWon = +F dl.     

Or for batteries, using  dWon = +V dq, 

Or for magnets Q
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We can use the Boltzmann  factor to calculate the average thermal energy, <E>,

per particle and the internal energy, U, of a system.  We will consider a collection of 

harmonic oscillators.

• The math is simple (even I can do it!), and

• It’s a good approximation to reality, not only for mechanical oscillations, 

but also for electromagnetic radiation.

Start with the Boltzmann probability distribution:

We need to calculate the partition function:

To do the sum, remember the energy levels

of the harmonic oscillator: En = nε. Equally spaced:

Define: 

Then:
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Heat Capacity & Harmonic Oscillators

En= nεεεε
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x e

It’s just a

geometric series.
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Heat Capacity & Harmonic Oscillators (2)
The ratio ε/kT is important. Let’s look at the probability for an oscillator 

to have energy En, for various values of that ratio. 
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Let’s calculate the average oscillator energy, and then the heat capacity.

At high T (when kT >> ε), eε/kT ≈ 1 + ε/kT: 

<E> ≈ kT, equipartition !!

At low T (when kT << ε), eε/kT >> 1:

<E> ≈ εe-ε/kT << kT.

Equipartition requires that kT is much larger than the energy level spacing,

so that there are many states with E < kT.
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Heat Capacity & Harmonic Oscillators (3)
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Calculate the heat capacity by taking the derivative :
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Heat Capacity & Harmonic Oscillators (4)

At what temperature is equipartition reached?

To answer this, we need to know how big ε is.

We use a fact from QM (P214):

ε = hf, where h is Planck’s constant = 6.6 10-34 J-s

f  is the oscillator frequency.

For typical vibrations in molecules and solids, 

kT = hf in the range 40 K to 4,000 K.

Vibrations are

“frozen out”

at low T

kT

0.5εεεε

Nk

C
Equipartition holds

at high T
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Act 3 

Very sensitive mass measurements (10-18 g sensitivity) 

can be made with nanocantilevers, like the one shown.  

This cantilever vibrates with a frequency, f = 127 MHz.   

FYI: h = 6.6×10-34 J-s and k = 1.38×10-23 J/K

1) What is the spacing, ε, between this oscillator’s 

energy levels?    

a) ε = 6.6×10-34 J b) ε = 8.4×10-26 J c) ε = 1.4×10-23 J

2) At what approximate temperature, T, will equipartition fail for this oscillator?

a) T = 8.4×10-26 K b) T = 6.1×10-3 K c) T = 295 K

Li, et al., Nature Nanotechnology 2, p114 (2007)
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Solution

Very sensitive mass measurements (10-18 g sensitivity) 

can be made with nanocantilevers, like the one shown.  

This cantilever vibrates with a frequency, f = 127 MHz.   

FYI: h = 6.6×10-34 J-s and k = 1.38×10-23 J/K

1) What is the spacing, ε, between this oscillator’s 

energy levels?    

a) ε = 6.6×10-34 J b) ε = 8.4×10-26 J c) ε = 1.4×10-23 J

2) At what approximate temperature, T, will equipartition fail for this oscillator?

a) T = 8.4×10-26 K b) T = 6.1×10-3 K c) T = 295 K

Li, et al., Nature Nanotechnology 2, p114 (2007)

ε = hf = (6.6×10-34 J-s)×(127×106 Hz) = 8.38×10-26 J
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Solution

Very sensitive mass measurements (10-18 g sensitivity) 
can be made with nanocantilevers, like the one shown.  
This cantilever vibrates with a frequency, f = 127 MHz.   
FYI: h = 6.6×10-34 J-s and k = 1.38×10-23 J/K

1) What is the spacing, ε, between this oscillator’s 
energy levels?    

a) ε = 6.6×10-34 J b) ε = 8.4×10-26 J c) ε = 1.4×10-23 J

2) At what approximate temperature, T, will equipartition fail for this oscillator?

a) T = 8.4×10-26 K b) T = 6.1×10-3 K c) T = 295 K

Li, et al., Nature Nanotechnology 2, p114 (2007)

ε = hf = (6.6×10-34 J-s)×(127×106 Hz) = 8.38×10-26 J

T = ε/k =  (8.38×10-26 J)/(1.38×10-23 J/K) = 6.1×10-3 K
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FYI: Recent Physics Milestone!FYI: Recent Physics Milestone!

There has been a race over the past ~20 years to put a ~macroscopic 

object into a quantum superposition.  The first step is getting the 

object into the ground state, below all thermal excitations. This was 

achieved for the first time in 2010, using vibrations in a small “drum” :

“Quantum ground state and single-phonon control of a mechanical resonator”, 

A. D. O’Connell, et al., Nature 464, 697-703 (1 April 2010)
Quantum mechanics provides a highly accurate description of a wide variety of physical 

systems. However, a demonstration that quantum mechanics applies equally to macroscopic 

mechanical systems has been a long-standing challenge... Here, using conventional cryogenic 

refrigeration, we show that we can cool a mechanical mode to its quantum ground state

by using a microwave-frequency mechanical oscillator—a ‘quantum drum’... We further show 

that we can controllably create single quantum excitations (phonons) in the resonator, 

thus taking the first steps to complete quantum control of a mechanical system.
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FYI: Heat Capacity of an Einstein Solid 3N FYI: Heat Capacity of an Einstein Solid 3N SHOSHO’’ss

� Consider a solid as atomic masses connected by springs 
(the atomic bonds):

Small system (one atom)

Einstein pretends it 

oscillates independently 

of other atoms.

For high T, Equipartition Theorem predicts ½ kT for each quadratic term in the energy:

kT)zyxmvmvmv( zyx 3222222

2

1 =κ+κ+κ+++

The energy and heat capacity of the entire solid (N atoms) is:

Nk3
dT

dU
CNkT3ENU V ===><=         

What about low temperatures?
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FYI: Heat Capacity of Einstein solidFYI: Heat Capacity of Einstein solid
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If a molecule has several modes of motion, some may 
be in equipartition, while others may be “frozen out”.

Consider a diatomic molecule (H2). 
It has three quadratic energy modes:

• Bond vibrations have a larger ε,
corresponding to T ~ 1000 K.

• Rotations have a moderate energy 
spacings,corresponding to T ~ 100 K.

• Translations have a continuous 
range of energies � never ‘frozen’ out

At T = 300 K, translations and rotations 
contribute to the heat capacity, 
but bond vibrations do not.

Many Modes of Motion ?

Cv

3/2 Nk

5/2 Nk

7/2 Nk

T10K            100K          1000K 

Heat Capacity of H2

Translations 

never  freeze out

Rotations 

contribute above 

T ~ 100 K.

Vibrations 

contribute above 

T ~ 1000 K.
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Next Class

Next Week: Heat Engines

• Thermodynamic processes and entropy

• Thermodynamic cycles

• Extracting work from heat

• Law of Atmospheres

• Thermal Radiation
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Supplement:

Derivation of <E> for the Harmonic Oscillator

This is always true:

This is true for the harmonic oscillator:
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Derivation of Equipartition
for quadratic degrees of freedom

To calculate <E>, we must perform a sum:

If kT >> ε (the energy spacing), then 

we can turn this sum into an integral:

q is the variable that determines E (e.g., speed).

The only subtle part is ρ(q).  This is the density of energy states per 

unit q, needed to do the counting right.  For simplicity, we’ll assume that 

ρ is constant.

Calculate <E>, assuming that E = aq2:

So, equipartition follows naturally from 

simple assumptions, and we know when it fails.

See the supplement for the behavior of linear modes.
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Supplement: Equipartition
for Linear Degrees of Freedom

When we talk about equipartition, (<E> = ½kT per mode) we say “quadratic”, to 

remind us that the energy is a quadratic function of the variable (e.g., ½mv2).

However, sometimes the energy is a linear function (e.g., E = mgh).

How does equipartition work in that case?

Boltzmann tells us the answer!

Let’s calculate <E>, assuming that there are lots of states with E < kT, 

(necessary for equipartition), and that these states are uniformly spaced 

in y (to simplify the calculation). Suppose E(y) = ay.

So, each linear mode has twice as much energy, kT, as each quadratic mode.
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