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Helpful Hints in Dealing with Helpful Hints in Dealing with 
Engines and FridgesEngines and Fridges

Sketch the process (see figures below).  

Define Qh and Qc and Wby (or Won) as positive and show directions of flow.  

Determine which Q is given. 

Write the First Law of Thermodynamics (FLT).

We considered three configurations of Carnot cycles:

Qh

Wby

Th

Tc
Qc

Engine:

We pay for Qh, 

we want Wby.

Wby = Qh - Qc = εQh

Carnot: ε = 1 - Tc/Th

Qleak= QC

Qh

Won

Th

Tc
Qc

Refrigerator:

We pay for Won, 

we want Qc.

Qc = Qh - Won = ΚWon

Carnot: Κ = Tc/(Th - Tc)

Qleak= QhQh

Won

Th

Tc
Qc

Heat pump:

We pay for Won, 

we want Qh.

Qh = Qc + Won = ΚWon

Carnot: Κ = Th/(Th - Tc)

These both have large Κ when Th - Tc is small.
This has large ε
when Th - Tc is large.
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ACT 11:
Entropy Change in Heat Pump

Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine
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Solution

Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Energy (heat) is entering the hot reservoir, so the

number of available microstates is increasing.

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine
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Solution

Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Energy (heat) is entering the hot reservoir, so the

number of available microstates is increasing.

Energy (heat) is leaving the cold reservoir.

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine
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Solution
Consider a Carnot heat pump.

1) What is the sign of the entropy change of the 

hot reservoir during one cycle?

a) ∆Sh < 0 b) ∆Sh = 0 c) ∆Sh > 0

2) What is the sign of the entropy change of the 

cold reservoir?

a) ∆Sc < 0 b) ∆Sc = 0 c) ∆Sc > 0

3) Compare the magnitudes of the two changes.

a) |∆Sc| < |∆Sh| b) |∆Sc| = |∆Sh| c) |∆Sc| > |∆Sh| 

Energy (heat) is entering the hot reservoir, so the

number of available microstates is increasing.

Energy (heat) is leaving the cold reservoir.

It’s a reversible cycle, so ∆Stot = 0.  Therefore, the two entropy changes

must cancel.  Remember that the entropy of the “engine” itself does not change.

Hot reservoir at Th

Cold reservoir at Tc

Qh

Qc

WEngine

Note: We’ve neglected the heat leak OUT of the hot reservoir. In fact, this must equal

Qh (why?). If that heat leaks directly into the cold reservior, this will be irreversible@
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Heat Engine Summary

1 c

h

Q

Q
ε = −For all cycles:

For the Carnot 

cycle:

Carnot (best)

efficiency:

Carnot engines are an idealization - impossible to realize.

They require very slow processes, and perfect insulation. 

When there’s a net entropy increase, the efficiency is reduced:

C arno t
C to t

H

T S

Q
ε ε

∆
= −

Some energy is dumped 

into the cold reservoir.

c c

h h

Q T

Q T
=

Carnot 1 c

h

T

T
ε = −

Qc cannot be reduced to zero.

Only for reversible cycles.
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ACT 2:  Work from a hot brickACT 2:  Work from a hot brick

We saw that the efficiency of any heat engine is given by      
ε = 1 - Qc/Qh.

Heat a brick to 400 K.  Connect it to a Carnot Engine. What 

is the average efficiency if the cold reservoir is 300 K? The 

brick has a constant heat capacity of C = 1 J/K.

a)  ε < 25% b) ε = 25% c) ε > 25% 

Wby
QC

Qh

Brick, 400K

300 K
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SolutionSolution

Wby
QC

Qh

Brick, 400 K

300 K

Did you use: ε = 1 - Tc/Th ?

If so, you missed that the brick is cooling (it’s not a constant T reservoir).

Therefore, the efficiency (which begins at 25%) drops as the brick cools.

We must integrate: (dQh = -CdT)

( )

( ) 1 1

ln

c h

C

T T

C C
by

Th T

h
h c c c

c

T T
W C T dT C dT

T T

T
C T T T C U T S

T

   
= − − = −   

   

 
= − − = −∆ + ∆ 

 

∫ ∫

This is an interesting result.

Let’s discuss it.

We saw that the efficiency of any heat engine is given by      
ε = 1 - Qc/Qh.

Heat a brick to 400 K.  Connect it to a Carnot Engine.     

What is the average efficiency if the cold reservoir is 300 K? 

The brick has a constant heat capacity of C = 1 J/K.

a)  ε < 25% b) ε = 25% c) ε > 25% 
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Available Work and Free EnergyAvailable Work and Free Energy

We just found that the work that the engine can do as the brick cools 

from its initial temperature to Tc is:

The form of this result is useful enough that we

define a new quantity, the “free energy” of the brick:

Fbrick ≡ Ubrick - TenvSbrick

With this definition, Wby = -∆Fbrick.  This is the best we can do.

In general, Wby will be smaller: Wby  ≤ -∆Fbrick = Fi – Ff

Free energy tells how much work can be extracted.  

It is useful, because it is almost entirely a property of the brick.

Only the temperature of the environment is important.

brick brickby cW U T S= −∆ + ∆

In the ACT, 

Tenv was Tc.
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ACT 3:  Work from a cold brick?ACT 3:  Work from a cold brick?

Wby
QC

Qh

Brick, 400 K

300 K

We obtained work from a hot brick, initially at 400K.

If instead the brick were initially at 200K, could we still do 

work in our 300K environment?

a) Yes.

b) No, you can’t have Th < Tc.

c) No, we would have to put work in.



Lecture 15, p 12

We obtained work from a hot brick, initially at 400K.

If instead the brick were initially at 200K, could we still do 

work in our 300K environment?

a) Yes.

b) No, you can’t have Th < Tc.

c) No, we would have to put work in.

SolutionSolution

Wby
QC

Qh

Brick, 400 K

300 K

Wby
QC

Qh

300 K

Brick, 200K

Think outside the box.  

Use the brick as the cold reservoir:

Question:

Can we use free energy to 

calculate the work?

Environment
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What is the free energy of an object that is hotter or colder than its environment?

The object is in thermal equilibrium when T = Tenv, so we will compare the free 

energy at other temperatures to its value at that temperature, since that is where 

the object will end up.

1) Heat the brick to 310 K.   ∆T = +10 K.

∆FB = 

2) Cool the brick to 290 K.   ∆T = -10 K.

∆FB =

Plot the results:

Exercise: Free Energy and EquilibriumExercise: Free Energy and Equilibrium

Useful info:

Heat Capacity of brick: C = 1kJ / K

∆UB = C ∆T = C(TB - 300K)

∆SB = C ln (TB / 300K)

∆FB = ∆UB - (300K) ∆SB
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SolutionSolution

What is the free energy of an object that is hotter or colder than its environment?

The object is in thermal equilibrium when T = Tenv, so we will compare the free 

energy at other temperatures to its value at that temperature, since that is where 

the object will end up.

1) Heat the brick to 310 K.   ∆T = +10 K.

∆FB = (1 kJ/K)*(10 K) -(300 K)*(1 kJ/K)*ln(310/300)

= 10 kJ - 9.84 kJ = 0.16 kJ

2) Cool the brick to 290 K.   ∆T = -10 K.

∆FB = (1 kJ/K)*(-10 K) -(300 K)*(1 kJ/K)*ln(290/300)

= -10 kJ + 10.17 kJ = 0.17 kJ

Plot the results:

Useful info:

Heat Capacity of brick: C = 1kJ / K

∆UB = C ∆T = C(TB - 300K)

∆SB = C ln (TB / 300K)

∆FB = ∆UB - (300K) ∆SB

=C(T-Te) - CTeln(T/Te)

You can plot

(x-300)-300*log(x/300)

on your calculator.

That’s how I got this graph.

Conclusion:

The free energy of the brick is

minimum when its temperature 

is the temperature of the 

environment.
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Equilibrium is found at Equilibrium is found at 
Free Energy MinimumFree Energy Minimum

The free energy is minimum when the system has the same temperature as the 

environment.  Why is F minimized in thermal equilibrium?

Equilibrium corresponds to a maximum in total entropy: 

Stot = S + Se

If the system draws dU from the environment, dSe = − dU/Te.  So:

dStot =  dS + dSe =    dS - dU / Te = 0 in equilibrium.

= - (dU - TedS) / Te = - dF / Te

So, dStot and dF are proportional to each other

with a minus sign (for a given Te).

Minimizing F is the same as maximizing Stot.

This is not a new physical concept, 

but F is often a more convenient analysis tool.

S Se Te

U

F

-TS

F

U

The two terms in F:
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CautionCaution……

Maximum Maximum SStottot Does Not Always Mean Minimum Does Not Always Mean Minimum FFsyssys

When we introduced the Helmholtz free energy, F, (see the “hot brick”

discussion), we assumed that the volume of the brick was constant.  If the 

volume weren’t constant, then the brick could gain or lose energy (and 

entropy) by contracting or expanding.  That would change the analysis.

It is very common that the pressure, not the volume, is constant (e.g., if 

our system is a gas at constant atmospheric pressure).  In this situation, 

we use a different form of free energy, called “Gibbs free energy”: 

G = U+pV-TS.  The pV term takes into account the work that is done 

during volume changes.

We won’t use Gibbs free energy in this course, but it important to be 

aware that the calculation of free energy depends on the situation.
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Free Energy Example

Suppose we have a liter of water at T = 100° C.  

What is its free energy, if the environment is T = 20° C?

Verify the result by calculating the amount of work we could obtain.

Remember that cH2O = 4186 J/kg.K.
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∆F = ∆U - T∆S, where T is the temperature of the environment.

∆U = mc∆T = 1 kg * 4186 J/kg.K * 80 K = 3.349×105 J.

∆S = mc ln(TH2O/Tenv) = 1011 J/K

∆F = 3.87×104 J

Remember to measure temperature in Kelvin.  

Otherwise, you’ll get the entropy wrong.

Suppose we have a liter of water at T = 100° C.  

What is its free energy, if the environment is T = 20° C?

Verify the result by calculating the amount of work we could obtain.

Remember that cH2O = 4186 J/kg.K.

Solution
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Solution

If we run a Carnot engine, the efficiency at a given water temperature is:

ε = 1 – Tcold /Thot.  So, for each small decrease in water temperature, we get 

this much work out of the engine:

dW = εQ = -εmc dT

Thus, the total work obtained as T drops from 100° C to 20° C is:

( ) ( )

 
= − − 

 

  = −   
  

= ×

∫
293

373

373

293

4

293
1

373
4186 J/K 293 K ln

293

3.87 10  K

W mc dT
T

T

Suppose we have a liter of water at T = 100° C.  

What is its free energy, if the environment is T = 20° C?

Verify the result by calculating the amount of work we could obtain.

Remember that cH2O = 4186 J/kg.K.
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•• In many situations maximizing In many situations maximizing totaltotal S (sometimes hard to calculate)S (sometimes hard to calculate)

to reach equilibrium implies minimizing to reach equilibrium implies minimizing systemsystem free energy free energy 

(sometimes easier to calculate).(sometimes easier to calculate).

•• When the system is out of equilibrium, its excess free energy giWhen the system is out of equilibrium, its excess free energy gives ves 

the amount of work that an ideal engine could extract from it inthe amount of work that an ideal engine could extract from it in a a 

given environment.given environment.

•• Free energy can be tabulated for many materials (Free energy can be tabulated for many materials (e.g.e.g., chemical fuels)., chemical fuels).

For the rest of the course we will consider important applicatioFor the rest of the course we will consider important applications ns 

of this principle:of this principle:

Paramagnets (revisited)Paramagnets (revisited)

The law of atmospheres (revisited)The law of atmospheres (revisited)

Solids: defects and impuritiesSolids: defects and impurities

Chemical reactions, especially in gasesChemical reactions, especially in gases

Carrier densities in semiconductorsCarrier densities in semiconductors

Adsorption of particles on surfacesAdsorption of particles on surfaces

LiquidLiquid--gas and solidgas and solid--gas phase transitionsgas phase transitions

Why is Free Energy important?
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Free Energy SummaryFree Energy Summary

For a Carnot engine: Wby = -∆U + Te ∆S  =  -∆F

where F = U - TS is called the Helmholtz* free energy of the system 
referenced to the temperature Te of the environment (or ‘reservoir’).  

The free energy of an object is always defined with reference to the temperature 
of a reservoir, often the environment. An object’s free energy is minimized when 

its temperature is the same as the environment.

F = U - TS = Free energy → Maximum Available Work

* There are actually several versions of free energy, depending on the

particular situation.  Helmholtz free energy applies when the system 

has a constant volume (e.g., a brick).  When pressure is constant 

(e.g., a pot of water open to the air), we use Gibbs Free Energy,

G = U + pV - TS.  We will not study the other versions in this course.
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Supplement: Gibbs Free EnergySupplement: Gibbs Free Energy

Most phase transitions are observed under constant p,T conditions, not 
constant-V,T.  Unless the stuff is in a closed vessel, it’s open to the air 
(thus, at atmospheric pressure).

In this case, the entropy of the environment changes not only when the 
system energy changes but also when its volume changes.  The 
reservoir is (by assumption) in equilibrium at fixed T and p.  So, as heat 
flows, the change of the reservoir’s entropy is:

The change in the total entropy is thus:

where:

( )
tot R

U p V U pV TS G
S S S S

T T T T

∆ ∆ −∆ + − −∆
∆ = ∆ + ∆ = ∆ − − = =

G U pV TS≡ + −

In these conditions, maximizing Stot means minimizing the system’s G.

Variables U, V, and S are of the system. 

Fixed p and T are of the reservoir.

R R R
R

Q U p V U p V
S

T T T

∆ + ∆ −∆ − ∆
∆ = = =

∆VR = -∆V and ∆UR = -∆U
because total volume and 

total energy are constant.
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Next MondayNext Monday

• Free Energy and Chemical Potential

• Simple defects in solids

• Ideal gases, revisited


