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• Thermal Diffusion

• Random Walk and Particle Diffusion

Lecture 5:

Diffusion

Reading: Elements Ch. 5
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Heat Conduction Summary
Heat current density J is the heat flow per unit area through a material.

Units: Watts/m2

J = -κ dT/dx (- sign because heat flows toward cold)

Thermal conductivityκ is the proportionality constant, a property of the material.

Units: Watts/m.K

Total heat current H is the total heat flow through the material.

Units: Watts

H = J.A  = -(κA dT/dx) ≈ ∆T/Rth

Rth ≡ d/κA

Hot Cold

J is the heat flow

per unit area

H is the total heat flow

through the whole area A

d
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You are cooking with two pots, that have the same height, but Pot B 

twice the area as Pot A (and thus twice the volume).  Initially the pots 

are both full of boiling water (e.g., 100 °C).  You set them each on the 

bottom of your metal sink.  Which cools faster?

A) Pot A

B) Pot B

C) They cool at same rate

Act 1: Cooling pots

A B
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Solution

The thermal resistance Rth = d/κA.

Assume that the thickness, d, of the pot bottoms is the same.  

Pot B has a larger area, so it will have a smaller Rth, and therefore more heat will 

flow out of it:  HB = 2HA..  Therefore, it should cool faster.

BUT8it also has twice as much water, and therefore twice the heat capacity. To 

change the temperature by 1°C, you need to remove twice as much heat. 

Therefore it should cool slower.  In fact, the two effects exactly cancel.

You are cooking with two pots, that have the same height, but Pot B 

has twice the area as Pot A (and thus twice the volume).  Initially the 

pots are both full of boiling water (e.g., 100 °C).  You set them each on 

the bottom of your metal sink.  Which cools faster?

A) Pot A

B) Pot B

C) They cool at same rate

A B
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How Long Does Heat Conduction Take?

The heat current H depends on the temperature difference 

between the two samples, and the thermal resistance: Rth = d/Aκ.

Assume that all the heat leaving A enters B.

The temperature of the samples depends on their initial 

temperatures, the amount of heat flowing into (out of) them, and

their heat capacities.

T A 
T B 

K 

H 

A B 
hot cold 

C A 
C B 

Rth
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� Heat “into” A:  

� Solution: ∆T(t) = ∆T(t=0) e-t/τ,   or   TA(t) = TB + (TA0 – TB) e-t/τ

� Plug into above DiffEQ:  τ = RthCA (like a discharging capacitor!)

Heat conduction – How long does it take?

� For simplicity we assume that system B is really big (a “thermal 

reservoir”), so that it’s temperature is always TB.  
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Act 2: Exponential Cooling

A hot steel bearing (at T = 200 C) is dropped into a large vat of          

cold water at 10 C.  Compare the time it takes the bearing to cool      

from 200 to 190 C to the time it takes to cool from 100 to 90 C.(Assume

the specific heat of steel is ~constant over this temperature range.)

a. t200�190C > t100�90C b. t200�190C = t100�90C c. t200�190C < t100�90C
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Solution

200C

10C

However, the rate of heat flow out 

of the bearing depends on  

Tbearing(t) − Twater, and is different 

(~190 C and ~90 C) for the two 

cases.  Because more heat flows at 

the outset, the initial temperature 

drop is faster. 
t200�190C

t100�90C

A hot steel bearing (at T = 200 C) is dropped into a large vat of          

cold water at 10 C.  Compare the time it takes the bearing to cool      

from 200 to 190 C to the time it takes to cool from 100 to 90 C.(Assume

the specific heat of steel is ~constant over this temperature range.)

a. t200�190C > t100�90C b. t200�190C = t100�90C c. t200�190C < t100�90C
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How Long to Equilibrate a Rod?

The rate at which heat flows from hot to cold is about H = κA∆T/d = ∆T/Rth

The heat capacity is C = cm = c ρ (vol) = c ρ (dA) ρ = mass density

Therefore

Alternatively, the typical distance that the thermal energy has traveled 
varies with the square root of the time: d ∝√t . This scaling is typical of  
diffusion, and results from the random nature of heat flow.

length dArea  A TT+∆T

2

thR C = (d/ A)(c dA) dτ κ ρ= ∝

How is it that random motion can give heat flow in a particular direction?

Thermal energy randomly diffuses around, spreading out.  However, the heat flow 
out of a region is proportional to the amount of energy that is there at that time.

Look at region 2.  More heat will randomly 
diffuse in from a high T region than from 
low T:      J12 > J21, and J23 > J32.

So there will be a net flow of heat in the 
direction of decreasing T. x

T 1       2      3

J12

J21

J23

J32
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Brownian Motion

• 1828 Robert Brown (English botanist) noticed that pollen seeds 

in still water exhibited an incessant, irregular “swarming” motion.

• There were several suggestion explanations, but none really 

worked until8

• 1905: Einstein, assuming the random motion of as-yet-

unobserved molecules making up the water, was able to 

precisely explain the motion of the pollen --- as a diffusive 

random walk.

• Einstein’s concrete predictions (he suggested measuring the 

mean-square displacements of the particles) led Jean Perrin to 

experiments confirming kinetic theory and the existence of 

atoms! 
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The Random Walk Problem (1)

We’ll spend a lot of time in P213 studying random processes.

As an example, consider a gas.  The molecules bounce around 

randomly, colliding with other molecules and the walls.

How far on average does a single molecule go in time?

The motion that results from a random walk is called diffusion.

http://intro.chem.okstate.edu/1314F00/Laboratory/GLP.htm

This picture can also apply to:

• impurity atoms in an electronic device

• defects in a crystal

• sound waves carrying heat in solid!
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We’ll analyze a simplified model of diffusion.

A particle travels a distance ℓ in a straight line, then scatters off 

another particle and travels in a new, random direction.

Assume the particles have average speed v.

As we saw before, there will be a distribution 

of speeds.  We are interested in averages.

Each step takes an average time

Note: ℓ is also an average, called the “mean free path”.

We’d like to know how far the particle gets after time t.

First, answer a simpler question:

How many steps, M, will the particle have taken?

The Random Walk Problem (2)

ℓ

t
M =

τ

v
τ =
ℓ
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Random walk with constant step size (ℓ always the same):

Random walk with random step size 
(ℓ varies, but has the same average):

Random Walk Simulation
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Simplify the problem by considering 1-D motion and constant step size.

At each step, the particle moves

After M steps, the displacement is

Repeat it many times and take the average:

The average (mean) displacement is:

The average squared displacement is:

The average distance is the square root

(the “root-mean-square” displacement)

The average distance moved is proportional to √t.

M
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The Random Walk Problem (3)

= ±ℓi xs

τ= = =ℓ ℓ
2 1/2 t

rms x xx x M

Cross terms cancel,

due to randomness.

Note:
This is the same square root
we obtained last lecture when
we looked at thermal conduction.
It’s generic to diffusion problems.
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The solution to the 3-D random walk, with varying ℓ and v, is similar 

(but the math is messier).  

The mean square displacement along x is still proportional to t:

D is called the diffusion constant*.

The 3-D displacement (along x, y, and z combined) is:

The Diffusion Constant

2 2= < > =rmsx x Dt

2 2 2 2 6= + + =r x y z Dt

2
2 1

3
, where2  

3
= = =

ℓ
ℓ

τ
x Dt D v These are the average 

values of τ, v, and ℓ.

* The numerical coefficients in general depend on the distribution of distances 

and time intervals. For Phys. 213 we’ll use the form above.
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Consider impurity atoms diffusing from the top surface of an 
aluminum film toward an interface with a semiconductor.

Assume that each impurity makes a random step of ℓ = 10-10 m 

about once every 10 seconds.

1. Approximately what is the diffusion constant, D?

2. If the Al is 10-7 m thick, approximately how long will it take
before many impurities have diffused through it?

Exercise: 
Impurity Diffusion in Semiconductors

Al

Si

x

Note: This is an important problem, because impurities affect 
the electrical properties of the Si, usually in a way we don’t want.
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( )2
102

21 2
10 m

0.3 10 m /s
3 30s

−

−≈ = = ×
ℓ

τ
D

Mean free path ℓ = 10-10 m

Time between steps τ = 10 s

We only care about motion along x, so use the 1-D formula:

( )

7
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2
72

7

-21 2

x 2Dt 10 m

10 mx
t 1.6 10 s ~ 6 months

2D 0.6 10 m /s

−

−
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Solution
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Act 3

If we make the thickness of the film twice as big, 
how much longer will the device last?

a) ×½

b) ×0.71

c) ×1.41

d) ×2

e) ×4
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Solution

If we make the thickness of the film twice as big, 
how much longer will the device last?

a) ×½

b) ×0.71

c) ×1.41

d) ×2

e) ×4 The diffusion time is proportional 
to the square of the thickness. =

2x
t

2D
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Act 4: Isotope Separation

You have the task of separating two isotopes of Uranium: 
235U and 238U. Your lab partner suggests the following: Put a gas 

containing both of them at one end of a long tube through which 

they will diffuse.   Which will get to the far end first?

A) 235U B) 238U C) Neither (equal time)
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Solution

You have the task of separating two isotopes of Uranium: 
235U and 238U. Your lab partner suggests the following: Put a gas 

containing both of them at one end of a long tube through which 

they will diffuse.   Which will get to the far end first?

A) 235U B) 238U C) Neither (equal time)

The diffusion time t ~ L2/3D, where D = vℓ/3.  

From equipartition:

Therefore t ∝ 1/D ∝ 1/v ∝√m.  The heavier isotope takes slightly longer.  

(This is the technique first used in the Manhattan Project. It was then found 

that centrifuges speed up the process.)

21 3
3 /

2 2
mv kT v kT m=⇒=
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Act 5: Lifetime of batteries
Batteries can lose their charge when the separated 

chemicals (ions) within them diffuse together. If you want 

to preserve the life of the batteries when you aren’t using 

them, you should8

(A) Refrigerate them (B) Slightly heat them
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Batteries can lose their charge when the separated 

chemicals (ions) within them diffuse together. If you want 

to preserve the life of the batteries when you aren’t using 

them, you should8

(A) Refrigerate them (B) Slightly heat them

The diffusion time t ~ <x2> /2D. 

From equipartition:

Therefore t ~ 1/D ~ 1/v ~ 1/√T  � cooling the batteries can reduce 

the diffusion constant, increasing the lifetime.

1
3

D v  = ℓ

21 3
mv = kT v= 3kT/m 

2 2
⇒

Solution
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FYI:  BatteriesFYI:  Batteries��

Does putting batteries in the freezer or refrigerator make them 

last longer?

� It depends on which type of batteries and at what temperature 

you normally store them. 

� Alkaline batteries stored at ~20˚C (room temp) discharge at 

about 2%/year.  However, at 38˚C (100˚F) the rate increases to 

25%/year.

� NiMH and Nicad batteries, start to lose power when stored for 

only a few days at room temperature. But they will retain a 

90% charge for several months if you keep them in the freezer 

after they are fully charged. If you do decide to store your 

charged NiMH cells in the freezer or refrigerator, make sure 

you keep them in tightly sealed bags so they stay dry. And you 

should also let them return to room temperature before using 

them.
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A perfume bottle is opened, and the molecules begin to diffuse through the 

air.  Suppose that perfume molecules move about 10 nm between 

collisions with air molecules, and that their average speed is v ~ 100 m/s.

1) What is the diffusion constant of perfume in air?

2) Suppose you hold your nose 10 cm from the perfume bottle.  When will 

you be able to smell the perfume?  What about a person across the room 

(5 m away)?

3) Are these times reasonable?

Home Exercise: Diffusion

× 4:1.5 10  s 
nose

Ans
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Solution

A perfume bottle is opened, and the molecules begin to diffuse through the 

air.  Suppose that perfume molecules move about 10 nm between 

collisions with air molecules, and that their average speed is v ~ 100 m/s.

1) What is the diffusion constant of perfume in air?

2) Suppose you hold your nose 10 cm from the perfume bottle.  When will 

you be able to smell the perfume?  What about a person across the room 

(5 m away)?

3) Are these times reasonable?

7 21
3

3.33 10  m /s−= = ×ℓD v

2

4

7

1.5 10  s ~ 4 hours (nose)
2

3.8 10  s ~ 1 year (across room)

= = ×

= ×

x
t

D

These times are much too long.  In this situation, conduction (air currents) 

is much more important than diffusion.  However, in solids, where 

conduction is rarely important, diffusion can dominate.
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Next Time

Statistical Mechanics

• Irreversibility and the Arrow of Time

• Microstates and Macrostates

• The Meaning of Equilibrium


