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v 

End with v = 0 
mgh = Utherm 

½ mv2 = Utherm  
Thermal energy in block  
converted to CM KE 

Thermal energy                   Kinetic energy            Potential energy 

Have you ever seen this happen? 
(when you weren’t asleep or on medication) 

h = Utherm/mg 

Utherm 

Which stage never happens? 

Irreversibility 
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Act 1: Irreversibility 
Replace the block in the last problem with an ice cube of the 
same mass.  Will that stuff jump off the table? 
 
A) Yes   B)  No 
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Replace the block in the last problem with an ice cube of the 
same mass.  Will that stuff jump off the table? 
 
A) Yes   B)  No 

Solution 

You probably forgot that the ice will melt and then evaporate! 
 
What won’t happen is for all the ice to jump up as one object. 
It will certainly all jump up, molecule-by-molecule. 
 
Why does one process happen, but not the other? 
There are lots of different ways for the water to evaporate, 
but only one way to jump up as a block. 
 
This is our first hint that:  
 

 Which event will happen is determined by the number  
 of different ways the various events could happen. 
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The Direction of Time 
In Physics 211 (Classical Mechanics), most of the processes you learned about 
were reversible.   For example, watch a movie of a pendulum swinging or a ball 
rolling down a plane.  Can you tell from the action whether the movie is being 
played forwards or backwards? 
 
The real world is full of irreversible processes.  E.g., a block sliding across a 
rough surface or a rocket being launched.  You know whether a movie of those 
is being played backwards or forwards. 
 
Time has a direction.  
   
Consider the free expansion of a gas. On a microscopic scale motion is 
reversible, so …....   
How can you in general know which way is forward? 
Our answer will be that total entropy never decreases. 

Which of the following are irreversible processes? 

 An object sliding down a plane  A balloon popping 
 A basketball bouncing on the floor  Rusting:  Fe + O2 →  Fe2O3 
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To illustrate how large, many-particle systems behave, consider a 
familiar system, the air in this room. 
 
Why does the air spread out to fill the room? 
 
a)  The atoms repel each other, so the gas expands to fill up the  

 available space. 
b)  The atoms move around randomly, so they just end up all over the  

 place by accident. 
c)  The energy of the system is lowered when the gas fills all the  

 available space. 

Act 2 
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To illustrate how large, many-particle systems behave, consider a 
familiar system, the air in this room. 
 
Why does the air spread out to fill the room? 
 
a)  The atoms repel each other, so the gas expands to fill up the  

 available space. 
b)  The atoms move around randomly, so they just end up all over the  

 place by accident. 
c)  The energy of the system is lowered when the gas fills all the  

 available space. 

Solution 

Choices a and c are wrong.  In fact, there is a small attraction between 
molecules.  
The molecules just distribute themselves randomly and quite uniformly. 
There are simply more ways to spread out the gas than to compress it. 
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Act 3:  Free Expansion of a Gas 

Free expansion occurs when a valve is opened allowing a gas 
to expand into a bigger container. 

 

 

 

Such an expansion is: 

A) Reversible, because the gas does no work and thus loses 
no energy. 

B) Reversible, because there is no heat flow from outside. 

C) Irreversible, because the gas won’t spontaneously go back 
into the smaller volume.    
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Solution 

Free expansion occurs when a valve is opened allowing a gas 
to expand into a bigger container. 

 

 

 

Such an expansion is: 

A) Reversible, because the gas does no work and thus loses 
no energy. 

B) Reversible, because there is no heat flow from outside. 

C) Irreversible, because the gas won’t spontaneously go back 
into the smaller volume.    
Because there are many fewer “microstates”. 
But WHY do we necessarily get half of the molecules on each side… 
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Counting and Probability 

We’ve seen that nature often picks randomly from the possible 
outcomes: 

 Position of a gas atom 
 Direction of a gas atom velocity 

 
We will use this fact to calculate probabilities. 

 This is a technique that good gamblers know about. 
 We will use the same counting-based probability they do. 

 
This is not like the stock market or football! 
We will end up with extremely precise and very general laws-  
not fuzzy guesswork. 
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Act 4: Rolling Dice 

Roll a pair of dice .  What is the most likely result for the sum?  
(As you know, each die has an equal possibility of landing on 
1 through 6.) 
 
A) 2 to 12 equally likely  B) 7  C) 5 
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Solution 

Roll a pair of dice .  What is the most likely result for the sum?  
(As you know, each die has an equal possibility of landing on 
1 through 6.) 
 
A) 2 to 12 equally likely  B) 7  C) 5 

Why is 7 the most likely result?   
Because there are more ways (six) to obtain it. 
 
 
 
How many ways can we obtain a six? (only 5) 
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Important Nomenclature Slide 
When we roll dice, we only care about the sum, not how it was obtained.  
This will also be the case with the physical systems we study in this course.  
For example, we care about the internal energy of a gas, but not about the 
motion of each atom. 
Definitions: 
Macrostate:  The set of quantities we are interested in (e.g., p, V, T). 
 
Microstate:  A specific internal configuration of the system, 

 with definite values of all the internal variables. 
Dice example:   
These microstates all correspond to the “seven” macrostate. 
 
 
 
Due to the randomness of thermal processes: 
Every microstate is equally likely.  Therefore  
the probability of observing a particular macrostate is  
proportional to the number of corresponding microstates. 

one microstate 
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The Meaning of Equilibrium (1) 
An Introduction to Statistical Mechanics 

In the free expansion of a gas, why do the particles tend towards 
equal numbers in each equal-size box? 
 
 
 
 
Let’s study this mathematically.   
 
Consider four particles, labeled A, B, C, and D.  They are free to 
move between halves of a container.  What is the probability that 
we’ll find three particles on the left and one on the right? 
(That’s the macrostate). 
A complication that we can ignore: 
We don’t know how many ‘states’ a particle can have  
on either side, but we do know that it’s the same number  
on each side, because the volumes are equal.  To keep  
things simple,  we’ll call each side one state.  This works  
as long as both sides are the same. 

A  C  
D B 

one microstate 



Lecture 6, p. 15 

Four microstates have exactly 3 particles on the left: 
 
 
 
 
We’ll use the symbol Ω(N,NL) to represent the number of microstates 
corresponding to a given macrostate. Ω(4,3) = 4. 
 
How many microstates are there with exactly 2 particles on the left? 
 
 
 
 
 
 
 
Use the workspace to find Ω(4,2) = _________. 

B C  
D A A B  

C D A  B  
D C A C  

D B 

The Meaning of Equilibrium (2) 
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Ω(4,2) = 6: 
 
 
 
 
 
 
 
 
This can be solved using the binomial formula, 
because each particle has two choices. 
 
 
 
Many systems are described by binary distributions: 
• Random walk 
• Coin flipping 
• Electron spin 

Solution 

( )
( ) ( )

Ω = ≡ = =
− −LL N N

L L

N! 4!N,N C 6
N ! N N ! 2! 4 2 !

A C B D 

B D A C B C A D 
A D B C 

C D A B 

A B C D 
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Now you can complete the table: 
 
 
 
The total number of microstates for this system is Ωtot = ________ 
 
Plot your results:  

  NL   0  1  2  3  4 
      Ω(4,NL) 

Ω(4,NL) 

0   1    2    3    4  NL 

# microstates 

2 

0 

6 

4 

P(NL) = Ω(4,NL)/Ωtot   Probability 

0   1    2    3    4  NL 

0.2 

0.1 

0.3 

0.4 

0.0 

The Meaning of Equilibrium (3) 
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  NL   0  1  2  3  4 
      Ω(4,ΝL)	

 1 1 4 4 6 

2N = 16 

Solution 

Now you can complete the table: 
 
 
 
The total number of microstates for this system is Ωtot = ________ 
 
Plot your results:  

Ω(4,NL) 

0   1    2    3    4  NL 

# microstates 

2 

0 

6 

4 

P(NL) = Ω(4,NL)/Ωtot   Probability 

0   1    2    3    4  NL 

0.2 

0.1 

0.3 

0.4 

0.0 
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You just plotted what is called an Equilibrium Distribution. 
It was done assuming that all microstates are equally likely. 
 
The basic principle of statistical mechanics: 
For an isolated system in thermal equilibrium, 
each microstate is equally likely. 
 
An isolated system that is out of thermal equilibrium  
will evolve irreversibly toward equilibrium.  
We’ll understand why this is as we go forward. 
 
For example, a freely expanding gas is not in equilibrium  
until the density is the same everywhere. 
 
 
 
This principle also explains why heat flows from hot to cold. 

The Meaning of Equilibrium (4) 
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Here are the probability distributions for various number of particles (N).  

• The width of a peak is proportional to √N. 
• The fractional width is proportional to √N/N = 1/√N. 
This means that for very large N (e.g., 1023),  
the effects of randomness are often difficult to see.   

Equilibrium for Large N 
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For large N, the equilibrium distribution looks remarkably sharp. 
In that case, we can accurately define an “Equilibrium Value”. 
The equilibrium value here is NL = N/2.   

   0                      1020                     2x1020  

s.d. ~ 1010   fractional width = 10-10 

2x1020 
particles 

s.d. = 3   fractional width = 1/3 

18 particles 

0       2      4       6     8      10   12    14     16     18 

Ω(m) 

NL 

Equilibrium Values of Quantities 

We have seen that thermal equilibrium is described by probability distributions.  
Given that, what does it mean to say that a system has a definite value of some 
quantity (e.g., particles in left half of the room)?  The answer comes from the 
large N behavior of the probability distribution. 

NL 
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Definitions: 
Macrostate:  The set of quantities we are interested in (e.g., p, V, T). 
Microstate:  A specific internal configuration of the system, 

 with definite values of all the internal variables. 
Assume: 
Due to the randomness of thermal processes, 
every microstate is equally likely.  Therefore  
the probability of observing a particular macrostate is  
proportional to the number of corresponding microstates. 
 

If we have systems with large numbers of particles, then the resulting 
probability distribution can be very peaked à equilibrium (single) ‘value’ 

Equilibrium Summary 

Many systems are described by binary distributions: 
• Random walk 
• Coin flipping 
• Electron spin 

This can be solved using the binomial formula, 
because each particle has two choices: 

P(A) = ΩΑ/Ωtot 

( )
( )

Ω = ≡
−

Ω =

LL N N
L L

N
tot

N!N,N C
N ! N N !

2



Lecture 6, p. 23 

Example: Electron Spin 

Electrons have spin and associated magnetic moment µ.   
They can only point “up” or “down”:* 
 
 
 
Consider a system of N=9 spins: 
 
The total magnetic moment (what we can measure) is: 

 M = (Nup - Ndown)µ ≡ mµ 
 
A macrostate is described by m.  The microstate above has m = +1. 
 
 

  or 

*This is a result from P214 that you’ll have to take on faith. 

One 
microstate 

Similar to HHTTHTHHT  
in a coin flipping experiment: 

m = “spin excess”  = Nup – Ndown  
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up
up down

N! N!(N ) (m)
N m N mN !N ! ! !
2 2

Ω = Ω =
+ −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⇒

Electron Spin (2) 
Count microstates for each value of m: 

  Ω(Nup) 
      or 
   Ω(m) 

Number of up spins:  Nup  =  0  1  2  3  4  5  6  7  8  9 
Nup - Ndown:  m =  -9  -7  -5  -3  -1  1  3  5  7  9 
# microstates:  Ω =  1  9  36  84  126  126  84  36  9  1 

Each macrostate is described by m. 
(what we measure). 

This problem will become more interesting later in the course.  We will put the 
spins in a magnetic field.  The energy of spin up will not equal the spin down 
energy, and the probabilities will change. 

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
up N

up down

N! 1P(N )
N !N ! 2
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When N is large, the binomial formula becomes impossible to evaluate  
on a calculator. 
 
 
 
 
Fortunately, when N is large the shape of the  
distribution becomes a Gaussian: 
 
 
 
This expression can be evaluated for very large N (e.g., 1023). 
 
Does it work?  Try N = 20, m = 2: 
 
Binomial:  Ω(1) = 167960, P(1) = 0.160 
Gaussian:  Ω(1) = 169276, P(1) = 0.161 
 
The agreement improves as N increases. 

( ) ( )2 2N
1/ 2 1/ 2m / 2N m / 2N2 2

N N
(m) 2 e P(m) e− −

π π
Ω = =⇒

Gaussian Approximation to the Binomial Distribution 

up up N
up down up down

N! N! 1(N ) P(N )
N !N ! N !N ! 2

⎛ ⎞
Ω = = ⎜

⎝
⇒ ⎟

⎠
Gaussian: 

Ex: 
N = 1010, m = 105 
P(m) = 8.0×10-6 
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Next Week 

Entropy and Exchange between systems 

• Counting microstates of combined systems 

• Volume exchange between systems 

• Definition of Entropy and its role in equilibrium 
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Suppose that a particle is undergoing a 1-dimensional random walk 
(equally likely steps in the + or minus directions.)   

What is the probability: 

1) that after N steps it is exactly where it started? Evaluate it for N=10. 

 
  

 

2) that after N steps it is within 2 steps of the maximum possible positive 
position?  Evaluate it for N=10.  

Exercise: Random Walk 
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Suppose that a particle is undergoing a 1-dimensional random walk 
(equally likely steps in the + or minus directions.)   

What is the probability: 

1) that after N steps it is exactly where it started? Evaluate it for N=10. 

There are 2N total microstates.  We want N+ = N- = N/2.  The probability 
that this happens is:  

 

2) that after N steps it is within 2 steps of the maximum possible positive 
position?  Evaluate it for N=10. 

Solution 

( )
( )22

!0 0.246
! 2NN

NP = =
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Suppose that a particle is undergoing a 1-dimensional random walk 
(equally likely steps in the + or minus directions.)   

What is the probability: 

1) that after N steps it is exactly where it started? Evaluate it for N=10. 

There are 2N total microstates.  We want N+ = N- = N/2.  The probability 
that this happens is:  

 

2) that after N steps it is within 2 steps of the maximum possible positive 
position?  Evaluate it for N=10. 

We must sum the three probabilities: P(N) + P(N-1) + P(N-2). 

 P(N)  = 1/2N  one microstate 
 P(N-1) = 0  N+ - N- must be even when N is even. 
 P(N-2) = N/2N  N microstates: N+ = N-1 and N- = 1. 

 
The sum is  

Solution 

( )
( )22

!0 0.246
! 2NN

NP = =

( ) 12 : 0.011
2N
NP N N +

− = =



Lecture 6, p. 30 

Do the previous exercise when N = 106. 

 

 

 

 

 

 

 

For what value of m is P(m) half of P(0)? 

    

Exercise: Random Walk (2) 
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Solution 

Do the previous exercise when N = 106. 

There is no way that we are going to evaluate 21,000,000. 

We must use the Gaussian approximation: 

 

1) m = 0: 

 

2) m = N and m = N-2: 

 

For what value of m is P(m) half of P(0)? 

We want    

( ) 21/ 2 m / 2N2
N

P(m) e−
π

=

( ) ( )6
1/ 2

42
10

P 0 8 10−
π

= = ×

( ) ( ) 6

6

1/ 2
10 / 22

10
P N e 0 for all practical purposes.−

π
= =

( )2m / 2N 1e m 2ln 2 N 1.177 N 1177
2

− = = = =⇒
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Example: Probability & Microstates 

The typical baseball player gets a hit 25% of the time.  If this player gets 
several hits in a row, he is said to be “on a streak”, and it’s attributed to his 
skill. 

1) What is the probability that this player will get a hit exactly 25% of the time 
if he tries 20 times (i.e., 5 hits and 15 misses)? 

 

 

 

 

2) What is the probability that this player will get five hits (no misses) in a row? 
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The typical baseball player gets a hit 25% of the time.  If this player gets 
several hits in a row, he is said to be “on a streak”, and it’s attributed to his 
skill. 

1) What is the probability that this player will get a hit exactly 25% of the time 
if he tries 20 times (i.e., 5 hits and 15 misses)? 

 

 

 

 

2) What is the probability that this player will get five hits (no misses) in a row? 

Solution 

There is only one way to do this (one microstate).  The probability is: P = 0.255 = 0.00098.   
That’s fairly small (about one in a thousand) for a particular player, but not unlikely to 
happen by chance somewhere on a particular day, if one remembers that there are more 
than 1000 “at bats” every day in major league baseball. 

The probability of obtaining a particular microstate (five hits and 15 misses, in a specific 
order) is 0.255×0.7515 = 1.3×10-5.  Now, count microstates (different orderings of hits and 
misses): N = 20! / (5!×15!) = 15,504.  Each microstate is equally likely, so the probability 
is 1.3×10-5 x 15,504 = 0.20. 
 
Here’s one microstate:  MMMMMHMHMMMHHMMMMHMM 


