The next two problems are related.

Radon is a radioactive noble gas (atomic weight $0.222 \mathrm{~kg} / \mathrm{mole}$) that leaks from the ground and often gets trapped in homes.

1. What is the average translational kinetic energy of a single radon molecule at room temperature $\left(20^{\circ} \mathrm{C}\right)$?

2. 4.40^{-25}
e. Cannot be determined with the information given.

$$
\begin{aligned}
& \langle N\rangle=0 \\
& m=\frac{0.2228 n}{6 \times 10^{23}} \\
& N=N_{r m s}=1 / \sqrt{\left.\frac{38}{2}\right\rangle} \\
& =\sqrt{\frac{2}{2}\langle K E\rangle} \\
& =18 / \mathrm{m} / \mathrm{s}
\end{aligned}
$$

2. Even though it becomes trapped, there is only $10^{-18} \mathrm{~kg} / \mathrm{m}^{3}$ of Radon gas at any one time due to its short half-life. What partial pressure does it exert in the home at room temperature?
3. $1 . \overline{1 \times 10^{-14}} \mathrm{~Pa}$
b. $1.1 \times 10^{-16} \mathrm{~Pa}$

$$
\begin{aligned}
& p V=N R T=n R T \\
& P=\frac{h}{V} R T=\frac{10^{18} R g}{h^{3}}
\end{aligned}
$$

c. $2.4 \times 10^{-14} \mathrm{~Pa} \quad$
3. The noble gasses He and Ar can be used to raise and lower the pitch of your voice respectively. What is the approximate ratio of the speed of sound of He to that of $\mathrm{Ar}, \mathrm{v}_{\mathrm{He}} / \mathrm{v}_{\mathrm{Ar}}$?
a. $\sqrt{\frac{1}{10}}$

$$
K E_{\text {twa ns }}=\frac{1}{2} m_{\text {He }}\left\langle v_{\text {He }}^{2}\right\rangle-\frac{3}{2} R T=\frac{1}{2} m_{\text {ma }}\left\langle n_{n}^{2}\right\rangle
$$

b. $\sqrt{\frac{1}{2}}$
c. 1
d. $\sqrt{2}$
e. $\sqrt{10}$

$$
\begin{aligned}
& \frac{v_{\text {Her mus }}}{N_{A_{n}}}=\sqrt{\frac{m_{\text {An }}}{m_{\text {me }}}} \\
& m_{\text {m er }}=40 \mathrm{~g} / \mathrm{mR} \\
& m_{m_{\text {He }}}=4 \mathrm{~g} / \mathrm{mol}
\end{aligned}=\sqrt{10}
$$

The next tho problems refer to the following situation:

$$
\begin{aligned}
& U=\alpha N E T=\alpha \text { n } R T \\
& \alpha_{\text {monatomic }}=\frac{3}{2} \quad\left[\begin{array}{l}
3 \\
\text { trans } \\
D O R]
\end{array}\right.
\end{aligned}
$$

Ozone $\left(\mathrm{O}_{3}\right)$ is a non-linear molecule (as shown in figure). Assume the O_{3} and O_{2} gasses below are at the sane roo temperature and neglect vibrational energy.
4. Which has more total internal energy, 2 moles of O_{3} or 3 moles of O_{2} ?
a. 2 moles of O_{3}
b. 3 moles of $\widehat{\mathrm{O}_{2}}$
c. They contain the same internal energy.
5. Which has a higher translational kinetic energy?
a. O_{2}
b. O_{3}

They are the same.

$$
\frac{W_{K E, t \sim a n,}}{\text { Molecule }}=\frac{3}{2} \& T
$$

$$
\alpha_{\text {diatomic }}=\frac{1}{2}[3+2]=\frac{5}{5}
$$

$$
T_{\text {non mean }}=\frac{1}{2}[3+3]=3
$$

$$
\begin{aligned}
& \text { Thigh enough that } \\
& \text { themes }
\end{aligned}
$$

$$
\sigma_{3}=\frac{1}{z}(3 \times 3+4)
$$

$$
\begin{aligned}
& 3 \text { moles of } O_{2} \\
& \text { would have more } \\
& \text { UKE, han than } 2 \text { moles } \\
& \text { of } O_{3} \text {) }
\end{aligned}
$$

6. Two $30-\mathrm{m}^{3}$ volumes are separated by a moveable barrier. 1000 kg of N_{2} is in the left volume and 1000 kg of CO_{2} is in the right volume. Assuming the system is kept at a constant temperature, which way does the barrier start to move when released?
a. left
c. It doesn't move.

$$
\begin{aligned}
\text { Method 1: } \quad P_{L} & =P_{R} \text { in } \\
n_{N_{3} R T} & =\frac{n_{\cos R} R T}{V_{R}}
\end{aligned}
$$

Maximize total entropy $\quad d \sigma_{\text {Tor }}=d \sigma_{L} d \sigma_{R} d V_{i=2} d V_{R}$

$$
\frac{\Delta p^{-m o m e n t u x}}{\Delta t}=\frac{m N^{2}(t m d)}{L}
$$

Both sides have same $m\left\langle N^{2}\right\rangle$ ($=3 z T$)
so just $N_{N 2}$ vo $N_{c_{\sigma_{2}}}$

$$
\begin{aligned}
& \sigma_{\text {TOT }}=\sigma_{L}+\sigma_{R} \\
& \frac{d V_{L}}{d \sigma_{L}}=0=\frac{d \sigma_{L}}{d V_{L}}+\frac{d \sigma_{R}}{d V_{L}}=\frac{d \sigma_{L}}{d V_{L}} \frac{d \sigma_{R}}{d V_{R}} \\
& \begin{array}{l}
\sigma=\ln \Omega \\
=\ln \left(V_{T}\right)^{N}=N \ln V_{+c a s t}^{V_{2}}=\frac{d \sigma_{L}}{d V_{L}}=\frac{d \sigma_{R}}{d V_{R}}=\frac{N_{R}}{V_{R}} \quad N_{L}>N_{R}
\end{array} \\
& \begin{array}{ll}
P_{L}=P_{R} & t=\frac{L}{N} \\
f_{L}=f_{R} &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Physics 213 } \\
& \text { 7. What temperature would an ideal gas of hydrogen molecules }\left(\mathrm{H}_{2}\right) \text { need to be in order for the average speed of } \\
& \text { each molecule to slow down to } 100 \mathrm{~m} / \mathrm{s} \text { ? } \\
& \text { a. } \\
& \text { a. } 4 \mathrm{~K} \\
& \text { d. } 8 \mathrm{~K} \\
& \text { e. } 40 \mathrm{~K}
\end{aligned}
$$

The next two problems refer to the following situation:
Suppose that we are given one mold of a complicated solid with an internal energy per particle of $\mathrm{U}=3 \mathrm{kT}+\eta(\mathrm{kT})^{2}$ where $\eta=7.4 \times 10^{20}$ Joules $^{-1}$.
8. What is the heat capacity (at constant volume) when the temperature $\mathrm{T}=300 \mathrm{~K}$?
a. $24.9 \mathrm{~J} / \mathrm{K}$
b. $50.4 \mathrm{~J} / \mathrm{K}$
$0.75 .9 \mathrm{~J} / \mathrm{K}$

$$
C=\frac{d Q}{d T}=
$$

$$
\frac{d U}{d T}
$$

9. Suppose that we heat the solid; what can we say about the change in internal energy in the following two scenarios: (A) starting from $\mathrm{T}=300 \mathrm{~K}$, the temperature of the solid increases by 2 K and the volume stays constant, or (B) starting from $\mathrm{T}=320 \mathrm{~K}$, the temperature of the solid increases by 2 K and the volume stays constant? २K
a. The internal energy increases more in scenario A .
(b) The internal energy increases more in scenario B.
c. The change in internal energy is non-zero and the same in both cases.
d. The internal energy does not change in either case.

$$
\begin{aligned}
& \text { e. Nothing can be determined from the given information. } \\
& \nless S(300 \rightarrow 3 \sigma 2) \quad \frac{1}{T}=\frac{\partial S}{\partial U}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta U(3+3 \rightarrow 353)
\end{aligned}
$$

The next three problems refer to the following situation:
Suppose that a thin spherical shell of Aluminum (density y $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$) with inner radius $\mathrm{R}_{\mathrm{i}}=4 \mathrm{~m}$ and outer radius $R_{0}=4.01 \mathrm{~m}$ is immersed in an extremely cold liquid. The shell is filled with a monatomic gas, and the initial temperature of the Aluminum and the contained gas is 293 K . Assume that we can treat the liquid bath as a heat reservoir at temperature 3 K .
10. If the thermal conductivity of Aluminum is $200 \mathrm{~W} /(\mathrm{m}-\mathrm{K})$, calculate the initial heat-flow, right after the sphere is immersed in the bath.
a. $1.16 \times 10^{9} \mathrm{~W}$
b. $1.57 \times 10^{9} \mathrm{~W}$
c. 2.90 W

$$
=\frac{290 k}{(0.0 m y)} \frac{200 \mathrm{w}}{m-k}\left(4 \pi(4 m)^{2}\right)
$$

11. Given that the specific heat of Aluminum is $900 \mathrm{~J} /(\mathrm{kg}-\mathrm{K})$ calculate the heat capacity of the spherical shell.
a. $2.45 \times 10^{6} \mathrm{~J} / \mathrm{K}$
b. $4.90 \times 10^{\circ} \mathrm{J} / \mathrm{N}$
c. $2.43 \times 10^{7} \mathrm{~J} / \mathrm{K}$
d. $4.91 \times 10^{8} \mathrm{~J} / \mathrm{K}$
e. $6.56 \times 10^{8} \mathrm{~J} / \mathrm{K}$

$$
C=c \cdot m=e \rho \cdot V=c \rho 4 \pi r^{2} d
$$

$$
\begin{aligned}
& =900(2700) 4 \pi \\
& =4.89 \times 10^{6} \mathrm{~J} / \mathrm{k}
\end{aligned}
$$

$C_{1 \text { ma }}=3 R \quad C=3 N k=3 n R$

$$
\begin{gathered}
C=3 N K=3 n R \\
\mathbb{H} e=\frac{C_{\text {ina }}}{m_{\text {male }}}=\frac{3 R}{0.028 \mathrm{~kg}_{9}}=924 \mathrm{~J} / \mathrm{sm} \mathrm{~K}
\end{gathered}
$$

$U=3 \mathrm{NET}$
12. Consider the heat transfer process that occurs through the Aluminum between the gas inside the spherical shell and the 3 K cold liquid bath outside. Which of the following statements is true?
(i) The gas inside the spherical shell will continue transferring heat to the liquid and its temperature will asymptote to \quad bsolute zero $(0 \mathrm{~K})$ after a long time.
(ii) The rate at which the temperature of the inside gas decreases becomes faster if a denser monatomic gas at the same temperature replaces the initial gas inside the shell.
(iii) The rate at which the inside gas changes temperature immediately after the shell is immersed doubles if the thickness of the Aluminum shell is cut in half.
a. i only
b. ii only
c. iii only
d. i and ii
e. ii and iii

$$
\begin{aligned}
& \frac{\text { gas }}{n} \\
& \operatorname{Mave}\left(\frac{N}{V}\right) \Rightarrow \text { move } N \\
& c=\alpha N K \\
& \text { Made } C \\
& \tau \text { increase } \\
& \text { slower rate } \\
& \text { diatomic }
\end{aligned}
$$

$$
\begin{aligned}
& C_{i}=\frac{3}{2} N K
\end{aligned}
$$

High T
곡NR

+ vibrations

Physics 213
13. Suppose that we have a particle executing random Brownian motion inside the gaseous planet Jupiter. If the particle has an average velocity of $10^{6} \mathrm{~m} / \mathrm{s}$ and an average time between collisions of 10 ms . how long, on average
will it take it to diffuse from the center of the planet to outer space (assume that the distance from the center to outer space is $69,000 \mathrm{~km}$)? Calculate your answer in earth days (1 earth day $=86,400 \mathrm{sec}$).
$\frac{10.53 \text { days }}{2.8 \text { days }}$ (ont cave what divectien difexusing in

$$
\begin{aligned}
& { }^{3 \text { days }}\left\langle r^{2}\right\rangle=6 \mathrm{Dt} \\
& D=\frac{1}{3} v l^{2}=\frac{1}{3} w \pi t \\
& \text { Higher } t=\frac{r^{2}}{60} \\
& =\frac{1}{3} r^{2} \tau=\frac{l}{r}
\end{aligned}
$$

$$
\begin{aligned}
& t-\frac{1}{\sqrt{T}}
\end{aligned}
$$

The next two problems refer to the following situation:
Consider a spin system of $1,000,000$ spins where each spin is equally likely to be up (u) or down (d).
14. The probability that exactly 500,000 spins are up is
a. greater than 50%
b. exactly equal to 50%
c. less than 50%

$$
\begin{aligned}
& P=\frac{\sqrt[n]{ }(50000}{\sqrt{201}} \\
& =\frac{10^{6}!}{(200000!500000!} \\
& \left.210^{6}\right)
\end{aligned}
$$

15. Consider the following two possibilities:
(1) All the spins are up.
sCULL

$$
\left.\frac{2 \infty}{2 \pi} e^{-\frac{n^{2}}{2} n}\right) \frac{\sqrt{\frac{1}{5}}}{\frac{5000}{5}}
$$

.Sup

Which of the following statements are true:
a. (1) and (2) are equally likely
b. (1) is more likely then (2)
c. (2) is more likely then (1)

$$
p=\left(\frac{1}{2}\right)^{6^{60}}
$$

All microstates èqually likely

The next three problems are related
filled with 1 mole of N_{2} at 100 K and the second box is filled with 1 mole of Ar at 200 K . The two boxes are placed into contact so heat can transfer
bet them. What is the final temperature?
a. 137.5 K
b. 150.0 K
$C_{l}=q_{n} R$

$$
C_{N_{2}}=\frac{5}{2} R
$$

c. 162.5 K

$$
C_{A}=\frac{3}{2} R
$$

17. Now suppose the wall between the two boxes is removed after they have equilibrated. What is the change in the $.11 .5 \mathrm{~J} / \mathrm{K}$) before and after removing the partition?
b. $11.5 \mathrm{~J} / \mathrm{K}$ blat at same te imp
b. $23.1 \mathrm{~J} / \mathrm{K}$
c. $5.76 \mathrm{~J} / \mathrm{K}$
$\Omega=\left(i_{T}\right)^{N} \sigma=N_{l_{n}} v_{\text {rama }}$

$$
\begin{aligned}
& \triangle S\left(T_{i} \rightarrow T_{f}\right) \quad T E(R \\
& \begin{array}{l}
=(p \ln 2) 2) \\
=-4.67 \mathrm{~J} / \mathrm{K}
\end{array} \\
& \Delta S_{\pi_{0}}=1.95 \mathrm{~J} / \mathrm{K} \quad S_{N_{2}}=\frac{5}{2} R \ln \frac{13859}{1025}=6.62 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

$$
\begin{aligned}
& \left|Q_{A-}\right|=\left|Q_{N_{2}}\right| \\
& C_{n a} \Delta T_{A N}=C_{N_{2}} \Delta T_{N_{2}} \\
& C_{A_{n}}\left(200-T_{f}\right)=C_{N_{z}}\left(T_{f}-100\right) \\
& T_{f}\left(C_{N_{1 N}+}+C_{M_{3}}\right)=C_{A_{2}} T_{A N}+C_{N_{2}} T_{N_{2}}
\end{aligned}
$$

18. After the system has equilibrated from the removal of the partition, what is the probability that all the gas is on the left half of the combined box?

c. $\left(\frac{1}{300}\right)^{2.41 \times 10^{20}}$

$$
\begin{aligned}
& \Omega_{i}= \\
& \left(V_{L} n_{T}\right)^{N} \\
& \Omega(A)=\left(N_{2} n_{1}\right)^{2} V_{2}
\end{aligned}
$$

$$
0 \text { crow }
$$

The next two questions are related.
On earth at sea level the partial pressure of N_{2} is 0.78 atm , at 270 K , but it falls off at higher altitudes. Assume that we can model this using the Boltzmann distribution for a gas in thermal equilibrium.
19. How will the ratio of the partial pressure of N_{2} at 1.6 km to the partial pressure of N_{2} at sea level change, as the temperature drops to 250 K ?
a. $\frac{p(1.6 \mathrm{~km}, 250 \mathrm{~K}) / p(0 \mathrm{~km}, 250 \mathrm{~K})}{p(1.6 \mathrm{~km}, 270 \mathrm{~K}) / p(0 \mathrm{~km}, 270 \mathrm{~K})}=0.98$
b. $\frac{p(1.6 \mathrm{~km}, 250 \mathrm{~K}) / p(0 \mathrm{~km}, 250 \mathrm{~K})}{p(1.6 \mathrm{~km}, 270 \mathrm{~K}) / p(0 \mathrm{~km}, 270 \mathrm{~K})}=1$
c. $\frac{p(1.6 \mathrm{~km}, 250 \mathrm{~K}) / p(0 \mathrm{~km}, 250 \mathrm{~K})}{p(1.6 \mathrm{~km}, 270 \mathrm{~K}) / p(0 \mathrm{~km}, 270 \mathrm{~K})}=1.01$
d. $\frac{p(1.6 \mathrm{~km}, 250 \mathrm{~K}) / p(0 \mathrm{~km}, 250 \mathrm{~K})}{p(1.6 \mathrm{~km}, 270 \mathrm{~K}) / p(0 \mathrm{~km}, 270 \mathrm{~K})}=1.04$
e. $\frac{p(1.6 \mathrm{~km}, 250 \mathrm{~K}) / p(0 \mathrm{~km}, 250 \mathrm{~K})}{p(1.6 \mathrm{~km}, 270 \mathrm{~K}) / p(0 \mathrm{~km}, 270 \mathrm{~K})}=1.06$

$E(h)=$ ugh

20. At sea level $(h=0)$ the ratio of partial pressures of N_{2} and O_{2} is
$\mathrm{p}\left(\mathrm{N}_{2}, \mathrm{~h}=0\right) / \mathrm{p}\left(\mathrm{O}_{2}, \mathrm{~h}=0\right)=0.78 / 0.21=3.7$. At what altitude above sea level will this ratio equal 1? (Hint: sketch the pressure curves as a function of altitude.)
a. 9.6 km
b. 75 km
c. There is no altitude where this occurs.'

$$
\begin{aligned}
& m_{\mathrm{N}_{2}}=28 \mathrm{gmal} \\
& m_{\mathrm{O}_{2}}=325 / \mathrm{mob}
\end{aligned}
$$

$$
h_{c, d_{2}}<h_{c, N_{2}} \quad e^{-}
$$

$$
\begin{aligned}
& \frac{\left(m_{N_{2}}-m_{\sigma_{2}}\right) g h}{h T}=-\ln \frac{0.21}{0.28} \\
& h=\frac{-\ln (21 / 0.78)}{m_{N_{2}}-m_{o_{2}}}
\end{aligned}
$$

The next four problems are related.
A vibrational mode of a CO_{2} molecule can be modeled as a harmonic oscillator.
21. Assuming the frequency of the oscillation is $7 \times 10^{13} \mathrm{~Hz}$ (corresponding to energy levels separated y $\varepsilon=4.6 \times 10^{-20}$ Joules, as illustrated here), what is the highest the temperature can be and still have the probability to be in the vibrational ground state $(\mathrm{E}=0)$ greater than 99% ?

a. 68 K

$$
\Sigma=h f
$$

b. 245 K

Aluat all inground state: $Z T \ll \epsilon$
c. 560 K

ब. 720 K

$$
P(\sigma)=\frac{e^{-E_{0} / / L T}}{\sum_{n=0}^{\infty} e^{-E_{n} / k T}}=\frac{1}{1+e^{-E / / T T}+e^{-\partial t / e\rangle}}
$$

\geqslant Formula

$$
0.99=\left(1-e^{-6 / 27}\right)
$$

$$
\begin{aligned}
& \frac{E}{A T}=-\operatorname{th} \frac{0.01}{0.99} \quad T=\frac{-E}{B \theta_{n}(0.01 / 0.99)} \\
& e^{N E / E T}=1-0.99=0.01 \\
& \frac{k}{\mu r}=-\ln _{-c}(0.01) \\
& T=\frac{-\varepsilon}{\varepsilon e_{n} 0.01}
\end{aligned}
$$

22. Compare the ratio of the probability of having exactly one quantum of energy to zero quantum of energy (ie., $\mathrm{P}(\mathrm{E}=\varepsilon) / \mathrm{P}(\mathrm{E}=0)$) vs. the ratio of the probability of having exactly two quantum of energy to one quantum of energy (ie., $\mathrm{P}(\mathrm{E}=2 \varepsilon) / \mathrm{P}(\mathrm{E}=\varepsilon)$).
23. $\mathrm{P}(\mathrm{E}=\varepsilon) / \mathrm{P}(\mathrm{E}=0)=\mathrm{P}(\mathrm{E}=2 \varepsilon) / \mathrm{P}(\mathrm{E}=\varepsilon)$
b. $\mathrm{P}(\mathrm{E}=\varepsilon) / \mathrm{P}(\mathrm{E}=0)>\mathrm{P}(\mathrm{E}=2 \varepsilon) / \mathrm{P}(\mathrm{E}=\varepsilon)$
c. Whether $\mathrm{P}(\mathrm{E}=\varepsilon) / \mathrm{P}(\mathrm{E}=0)$ is greater or less than $\mathrm{P}(\mathrm{E}=2 \varepsilon) / \mathrm{P}(\mathrm{E}=\varepsilon)$ depends on the temperature.
24. What is the ratio of the heat capacity (from the vibration) of one of these molecules at low temperature ($\mathrm{T} \rightarrow 0$) to that at high temperature $(\mathrm{T} \rightarrow \infty)$?
C $(\mathrm{T} \rightarrow 0) / \mathrm{C}(\mathrm{T} \rightarrow \infty)=0$
b. $\mathrm{C}(\mathrm{T} \rightarrow 0) / \mathrm{C}(\mathrm{T} \rightarrow \infty)=1$
c. $\mathrm{C}(\mathrm{T} \rightarrow 0) / \mathrm{C}(\mathrm{T} \rightarrow \infty)=\infty$

A4 low

$$
c(\tau \rightarrow 0) \rightarrow 0
$$

(nothing excited
\rightarrow Presetting in
$C(T \rightarrow \infty)$

$$
\begin{aligned}
& \text { Eguipartition } \\
& C=N R \text { for } 5 H 0 \\
& C=\frac{d\langle E\rangle}{d T}=R
\end{aligned}
$$

24. Suppose that there were two vibrational states with $\mathrm{E}=\varepsilon$ and one with $\mathrm{E}=0$ (ie., the first excited level is degenerate). How would the probability $\mathrm{P}(\mathrm{E}=0)$ to be in the ground state change (compared to the case of a nondegenerate first-excited level, and assuming $\mathrm{T}>0$)?
a. $\mathrm{P}(\mathrm{E}=0)$ would be smaller than if the first excited level had only one state.
b. $\mathrm{P}(\mathrm{E}=0)$ would be the same as if the first excited level had only one state.
c. $\mathrm{P}(\mathrm{E}=0)$ would be greater than if the first excited level had only one state.

$$
\begin{aligned}
& \text { Mare ways net to be in gronudstrute: } \\
& p(g) \text { decrease }
\end{aligned}
$$

$$
P(g)=\frac{e^{0}}{e^{0}+2 e^{-\operatorname{tg} / t}}
$$

