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“A vast time bubble has been projected 
into the future to the precise moment 
of the end of the universe.  

This is, of course, impossible.”
--D. Adams, The Hitchhiker’s Guide to 

the Galaxy

“There is light at the end of the 
tunnel.” -- proverb

“The light at the end of the tunnel is 
just the light of an oncoming train.”

--R. Lowell
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Lecture 13:
Barrier Penetration and Tunneling
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Today

Tunneling of quantum particles

• Scanning Tunneling Microscope (STM)

• Nuclear Decay

• Solar Fusion

Next time: Time-dependent quantum mechanics

• Oscillations

• Measurements in QM

• Time-Energy Uncertainty Principle

The rest of the course: 

Next week: 3 dimensions - orbital and spin angular momentum

H atom,  exclusion principle, periodic table

Last week: Molecules and solids.

Metals, insulators, semiconductors, superconductors,

lasers, . . 

Good web site for animations http://www.falstad.com/qm1d/
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Due to “barrier penetration”, the electron density of a metal actually 
extends outside the surface of the metal!

EF

Occupied levels

Work

function Φ

Vo

Assume that the work function (i.e., the energy difference between the most 
energetic conduction electrons and the potential barrier at the surface) of a 
certain metal is Φ = 5 eV. Estimate the distance x outside the surface of the metal 
at which the electron probability density drops to 1/1000 of that just inside the 
metal.
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Due to “barrier penetration”, the electron density of a metal actually 
extends outside the surface of the metal!

EF
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Work

function Φ

Vo

Assume that the work function (i.e., the energy difference between the most 
energetic conduction electrons and the potential barrier at the surface) of a 
certain metal is Φ = 5 eV. Estimate the distance x outside the surface of the metal 
at which the electron probability density drops to 1/1000 of that just inside the 
metal.
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Tunneling: Key Points
In quantum mechanics a particle can penetrate into a barrier where it would be 

classically forbidden.

The finite square well:
In region III, E < U0, and ψ(x) has the exponential form 
D1e

-Kx.  We did not solve the equations – too hard!  

You will do this using the computer in Lab #3.

The probability of finding the particle in the barrier region decreases as e-2Kx.

The finite-width barrier:
Today we consider a related problem – a particle approaching a finite-width 

barrier and “tunneling” through to the other side.

The result is very similar, and again the problem is too hard to solve exactly here: 

The probability of the particle tunneling through a finite width barrier is 

approximately proportional to e-2KL where L is the width of the barrier.
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U(x)

x

I II III

0 L

0

UoWhat is the the probability that an incident 

particle tunnels through the barrier?  

It’s called the “Transmission Coefficient, T”.

Consider a barrier (II) of height U0.  

U = 0 everywhere else.

Getting an exact result requires applying the boundary conditions at x = 0 

and x = L, then solving six transcendental equations for six unknowns:

A1, A2, B1, B2, C1, and C2 are unknown.  K and k are known functions of E.

This is more complicated than the infinitely wide barrier, because we can’t 

require that B1 = 0. (Why not?)

Tunneling Through a Barrier (1)
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Tunneling Through a Barrier (2)

This is nearly the same result as in the

“leaky particle” example!   Except for G:

We will often ignore G.

(We’ll tell you when to do this.)

The important result is e-2KL.
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In many situations, the barrier width L 

is much larger than the ‘decay length’ 1/K of 

the penetrating wave (KL >> 1).  In this case 

B1 ≈ 0 (why?), and the result resembles the 
infinite barrier.  The tunneling coefficient simplifies:
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Consider a particle tunneling through a barrier.

1. Which of the following will increase the 

likelihood of tunneling? 

a. decrease the height of the barrier

b. decrease the width of the barrier

c. decrease the mass of the particle

2. What is the energy of the emerging particles?

a. < initial energy b. = initial energy c. > initial energy

Act 1
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Consider a particle tunneling through a barrier.

1. Which of the following will increase the 

likelihood of tunneling? 

a. decrease the height of the barrier

b. decrease the width of the barrier

c. decrease the mass of the particle

2. What is the energy of the emerging particles?

a. < initial energy b. = initial energy c. > initial energy

Solution

0 L
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2KLT e−≈ Decreasing U0 or me will decrease K.
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Consider a particle tunneling through a barrier.

1. Which of the following will increase the 

likelihood of tunneling? 

a. decrease the height of the barrier

b. decrease the width of the barrier

c. decrease the mass of the particle

2. What is the energy of the emerging particles?

a. < initial energy b. = initial energy c. > initial energy

Solution

0 L

U0

x

U(x)

E

2KLT e−≈ Decreasing U0 or me will decrease K.

The barrier does not absorb energy from the particle.

The amplitude of the outgoing wave is smaller, but the 

wavelength is the same.  E is the same everywhere.

Probability

 ≠ Energy



~40 fA

~80 fA

~120 fA

Nature 434, 361 - 364 (17 March 2005) 

Current measurement by real-time counting of single electrons
JONAS BYLANDER, TIM DUTY & PER DELSING

Electrons that successfully tunnel through the 50 junctions are 
detected using a fast single-electron transistor (SET).

Example: Electrons in Example: Electrons in 
NanoscaleNanoscale devicesdevices
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Application:  Tunneling Microscopy

material STM tip

STM tip
material

~ 1 nm

x Metal
tip

One can use barrier penetration to measure the electron density on a  surface.

Na atoms on metal:

Real STM tip

Scanning

Tunneling

Microscope 

images

DNA Double Helix:

STM demo: 

http://www.quantum-physics.polytechnique.fr/en/

Barrier penetration is a wave phenomenon, not only QM.  

It is used in optical microscopes also.  See:
http://en.wikipedia.org/wiki/Total_internal_reflection_fluorescence_microscope
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The STM

The STM (scanning tunneling microscope) tip is 

L = 0.18 nm from a metal surface.

An electron with energy of E = 6 eV in the metal 

approaches the surface.  Assume the metal/tip gap 

is a potential barrier with a height of Uo = 12 eV.  

What is the probability that the electron will tunnel 

through the barrier?
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2 2(12.6)(0.18)4e
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Q: What will T be if we double the width of the gap?

The STM

The STM (scanning tunneling microscope) tip is 

L = 0.18 nm from a metal surface.

An electron with energy of E = 6 eV in the metal 

approaches the surface.  Assume the metal/tip gap 

is a potential barrier with a height of Uo = 12 eV.  

What is the probability that the electron will tunnel 

through the barrier?
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T << 1, so our use of the KL >> 1 

approximation is justified.
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What effect does a barrier have on probability?

Suppose T = 0.05.  What happens to the other 95% of the probability?

a. It’s absorbed by the barrier.

b. It’s reflected by the barrier.

c. The particle “bounces around” for a while, then escapes.

ACT 2
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What effect does a barrier have on probability?

Suppose T = 0.05.  What happens to the other 95% of the probability?

a. It’s absorbed by the barrier.

b. It’s reflected by the barrier.

c. The particle “bounces around” for a while, then escapes.

Absorbing probability would mean that the particles disappear.

We are considering processes on which this can’t happen.  

The number of electrons remains constant.

Escaping after a delay would contribute to T.

Solution
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Suppose an electron with energy E approaches a step, effectively an infinitely 

wide barrier of height 2E.  (I picked this ratio to simplify the math.)

What does the wave function look like, and what is happening? 

Electron Approaching a Step 

E

U0 = 2E
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Suppose an electron with energy E approaches an infinitely wide barrier of 

height 2E.  (I picked this ratio to simplify the math.)

What does the wave function look like, and what is happening?

Here’s the solution:

K = k, because U0-E = E.

The constants √2 and 3π/4 
come from the boundary conditions.

What is this graph telling us?

Solution

E

U0 = 2E

ψ0

sin(3π/4) = 1/√2

e-2π = 0.002
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Solution

( ) ( )3
0 4

0

For x < 0: 2 sin

For x > 0: kx

x kx

e
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ψ0

−2λ λ−λ−4λ −3λ

Sin(kx) is a standing wave.

It has nodes every λ/2.

So, what do I mean when I say

that the electron approaches

the barrier?

Remember two things:

• The wave oscillates: e-iωt .
• We can write: sin(kx) = (eikx - e-ikx) / (2i)

Thus, this standing wave is actually a

superposition of two traveling waves:

ei(kx-ωt) and  ei(-kx-ωt).

The wave is entirely reflected.  None is absorbed by the barrier. 

It penetrates a short distance, but then bounces out.

The incoming wave, The reflected wave,

traveling to the right. traveling to the left.

For legibility, I’m ignoring 

the 3π/4 phase shift.
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Tunneling and Radioactivity

In large atoms (e.g., Uranium), the nucleus can 

be unstable to the emission of an alpha particle 

(a He nucleus).  This form of radioactivity is a 

tunneling process, involving transmission of the 

alpha particle from a low-energy valley through 

a barrier to a lower energy outside.

Why do we observe exponential decay?

• ψ leaks out from C through B to A – the particle “tunnels” out.
• The leakage is slow (T << 1), so ψ just outside the barrier stays negligible.

• The shape of ψ remaining in B-C shows almost no change:
Its amplitude slowly decreases.  That is, Pinside is no longer 1.

• The rate at which probability flows out is proportional to Pinside
(by linearity) ⇒ exponential decay in time.

U(x)

A B C B A

interior

of

nucleusoutside outside

τ− −= − = =⇒ /At tdx
Ax x e e

dt
t1/2 = (τ ln 2) is the “half life”

of the substance



Consider a very simple model of a-radiation:

Assume the alpha particle (m = 6.64 x 10-27 kg) is trapped in a nucleus 

which presents a square barrier of width L and height Uo. To find the 

decay rate we consider:

(1) the “attempt rate” at which the alpha particle of energy E inside 

the nucleus hits the barrier

(2) the tunneling probability for an alpha particle with energy E each 

time the particle hits the barrier. [For this order of magnitude

calculation you may neglect G.]  Here we use

Because of the exponential this factor can vary enormously!

αα--Radiation:  Illustrations of the enormous Radiation:  Illustrations of the enormous 
range of decay rates in different nuclei range of decay rates in different nuclei 

KL
eT
2−≈ ( )02

2m
K U E= −

ℏ

Rough estimate with E ~ 5 to 10 MeV: the alpha particle makes about 
1021 “attempts” per second (~velocity/nuclear diameter)



Polonium has an effective barrier width of ~10 fermi, leading to a 

tunneling probability of ~10-15. Now consider Uranium, which has a 

similar barrier height, but an effective width of about ~20 fermi. 

Estimate the tunneling probability in Uranium:

a. 10-30

b. 10-14

c. 10-7

Act 3Act 3



Polonium has an effective barrier width of ~10 fermi, leading to a 

tunneling probability of ~10-15. Now consider Uranium, which has a 

similar barrier height, but an effective width of about ~20 fermi. 

Estimate the tunneling probability in Uranium:

a. 10-30

b. 10-14

c. 10-7

SolutionSolution

KL
eT
2−≈

Think of it this way – there is a 10-15 chance to get 

through the first half of the barrier, and a 10-15 chance to 

then get through the second half.

Alternatively, when we double L in 

this is equivalent to squaring the transmission T.

Polonium: Using 1021 “attempts” at the barrier per second, the 

probability of escape is about 106 per second� decay time ~1 µs.

Uranium: Actually has a somewhat higher barrier too, leading to 

P(tunnel) ~ 10-40� decay time ~1010 years!
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The solar nuclear fusion process starts when two 

protons fuse together.  In order for this reaction to 

proceed, the protons must “touch” (approach to 

within 10-15 m of each other).  

The potential energy, U(r), looks something like this:

The temperature of the sun’s core is T ~ 1.3x107 K.

This corresponds to an average kinetic energy: 

kBT = 2 x 10
-16 J (kB = Boltzman’s constant) 

At r = 10-15 m the height of the Coulomb barrier is:

U(r) = (1/4πε0)e2/r = (9x109)x(1.6x10-19 C)2/10-15 m
= 2 x 10-13 J

Thus, the protons in the sun very rarely have enough 

thermal energy to go over the Coulomb barrier.

How do they fuse then? By tunneling through the barrier!

Tunneling Example: The Sun

r

U(r)

0

Coulomb 

repulsion

Nuclear
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10-15 m

kBT



Next Lectures

Tunneling of quantum particles

• Scanning Tunneling Microscope (STM)

• Nuclear Decay

• Solar Fusion

• The Ammonia Maser


