"It was almost as incredible as if
you fired a 15-inch shell at a piece
of tissue paper, and it came back
to hit you!”

--E. Rutherford

(on the ‘discovery’
of the nucleus)




Special (Optional) Lecture

“Quantum*'nformation”
o One of the most modern applications of QM
e quantum cormouting
o quantum communication — cryptographysfieleportation
o quantum metrology
o Prof. Kwiat will give a speciai214=evel lecture on this topic
o Sunday, Feb. 27
e 3 pm, 151 Loomis
o Attendance is ortional, but encouraged.
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Lecture 16:
3D Potentials and the Hydrogen Atom

w(x,,2) = p(x)p(y)p(z)
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Overview of the Course

Up to now:
General properties and equations of quantum mechanics
Time-independent Schrodinger’'s Equation (SEQ) and eigenstates.
Time-dependent SEQ, superposition of eigenstates, time dependence.
Collapse of the wave function, Schrodinger’s cat
Tunneling

This week:
3 dimensions, angular momentum, electron spin, H atom

Exclusion principle, periodic table of atoms

Next week:
Molecules and solids, consequences of Q.M.
Metals, insulators, semiconductors, superconductors, lasers, . .

Final Exam: Monday, Oct. 15
Homework 6: Due Saturday (Oct. 13), 8 am
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Today

3-Dimensional Potential Well:
Product Wave Functions
Degeneracy

Schrodinger's Equation for the Hydrogen Atom:
Semi-quantitative picture from uncertainty principle
Ground state solution™
Spherically-symmetric excited states (“s-states”)*

*contains details beyond what we expect you to know on exams.
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Quantum Particles in 3D Potentials

A real (2D) “quantum dot”

So far, we have considered quantum particles \ ,
bound in one-dimensional potentials. This
situation can be applicable to certain physical

systems but it lacks some of the features of

most real 3D quantum systems, such as \

atoms and artificial structures.

http://pages.unibas.ch/phys-meso/Pictures/pictures.htmi

One consequence of confining a quantum particle in
two or three dimensions is “degeneracy” -- the existence
of several quantum states at the same energy.

To illustrate this important point in a simple system,
let’s extend our favorite potential - the infinite square well - to three dimensions.
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Particle ina 3D Box (1)

The extension of the Schrodinger Equation (SEQ) to 3D is
straightforward in Cartesian (x,y,z) coordinates:

w(oy oy v
- +—=+
2m\ ox* oy* oz

]+U(X,y,2)w=Ew where ¥ =y/(X,Y,Z)

Kinetic energy term: i(,oi + 0% +pZ)
2m
Let’s solve this SEQ for the particle in a 3D cubical box:

o outside box, xoryorz<0
U(x,y,z) =4 0 inside box
o outside box, xoryorz>L

This U(x,y,z) can be “separated”:
U(x,y,z) = U(x) + U(y) + U(z)

U = « if any of the three terms = .
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Particle ina 3D Box (2)

Whenever U(x,y,z) can be written as the sum of functions of the individual
coordinates, we can write some wave functions as products of functions of
the individual coordinates: (see the supplementary slides)

w(x,y,z) =1(x)g(y)h(z)

For the 3D square well, each function is
simply the solution to the 1D square well
problem:

h2
“2m

f(x)= Nsin(nzﬁ xj E_

Similarly for y and z.

Each function contributes to the energy.
The total energy is the sum:

Etotal = E, + E + E,

http://www.falstad.com/gm2dbox/

2D wave functions:

. (N . (N7
sin| == x [sin| X~y
(L j (L
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Particle in a 3D Box (3)

The energy eigenstates and energy values in a 3D cubical box are:

= Nsin nxnx sin M sin nznz
V= L LY L

2

e g )2

2 2 2
(nx+ny+nz)

where n,,n,, and n, can each have values 1,2,3,....

This problem illustrates two important points:

Three quantum numbers (n,,n,,n,) are needed to identify the state of
this three-dimensional system.

That is true for every 3D system.

More than one state can have the same energy: “Degeneracy’.
Degeneracy reflects an underlying symmetry in the problem.
3 equivalent directions, because it's a cube, not a rectangle.
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Cubical Box Exercise

Consider a 3D cubic box:

Show energies and label (n,,n ,n,) for the first 11
states of the particle in the 3D box, and write the
degeneracy, D, for each allowed energy. Define
E = h?/8mL2

a

= (nN,N,) Degeneracy

- (21,1) (1,21) (1,1,2)

- (1,1,1)
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Solution

Consider a 3D cubic box:

Show energies and label (n,,n ,n,) for the first 11
states of the particle in the 3D box, and write the
degeneracy, D, for each allowed energy. Define
E = h?/8mL2

A

(n,,n,n,) Degeneracy
D=1

2
@A) (13D (113 D=8 g M (p2ip2ip)
Tyl 8mL2 X y z

(2’211) (21172) (1’2’2) D=3 nX’ny’nZ= 1,2,3,...

2,1,1) (1,2,1) (1,1,2)

- (1,1,1)
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Act 1

For a cubical box, we just saw that the 5" energy level is at 12 E,,
with a degeneracy of 1 and quantum numbers (2,2,2).

1. What is the energy of the next energy level?
a. 13E, b. 14E, c. 15E,

2. What is the degeneracy of this energy level?
a. 2 b. 4 c.6
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Solution

For a cubical box, we just saw that the 5" energy level is at 12 E,,
with a degeneracy of 1 and quantum numbers (2,2,2).

1. What is the energy of the next energy level?
a. 13E, b. 14E, c. 15E,

E,,s=Ey (12+ 22+ 32) = 14 E,

2. What is the degeneracy of this energy level?
a. 2 b. 4 c.6
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Solution

For a cubical box, we just saw that the 5" energy level is at 12 E,,
with a degeneracy of 1 and quantum numbers (2,2,2).

1. What is the energy of the next energy level?
a. 13E, b. 14E, c. 15E,

E,,s=Ey (12+ 22+ 32) = 14 E,

2. What is the degeneracy of this energy level?
a. 2 b. 4 c.6

Any ordering of the three numbers will give the same energy.
Because they are all different (distinguishable), the answer is 3! = 6.

Question:
Is it possible to have D > 67?
Hint: Consider E = 62E,,.
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Another 3D System: The Atom
-electrons confined in Coulomb field of a nucleus

Early hints of the quantum nature of atoms:

Discrete Emission and Absorption spectra

o When excited in an electrical discharge, atoms
emit radiation only at discrete wavelengths

o Different emission spectra for different atoms

Atomic hydrogen

Geiger-Marsden (Rutherford) Experiment (1911):

e Measured angular dependence of a particles (He ions) Au
scattered from gold foil. /
« Mostly scattering at small angles > supported the v
“plum pudding” model. But..

o Occasional scatterings at large angles - Something massive in there!

o Conclusion: Most of atomic mass is concentrated
in a small region of the atom =) a hucleus!




Rutherford Exper'imen‘r

scintillations

transmitted beams moavable
(little or no deflection] ___fluorescent
scattered beam - SEFEEH
fsmall deflection)
scattered beam =t
(large deflection} »

: gqold foil

Viewing
MICroscope

alpha particles interacting
beam of with atoms in gold foil
alpha

particles

lead shield lead screen
with slit p_—

radioactive particles
Source

,.-" “‘I_JI:I.IIj ‘
nucleus At gold foil
21993 Encyclopaedia Britannica, Inc.




Atoms: Classical Planetary Model

(An early model of the atom)

« Classical picture: negatively charged objects

(electrons) orbit positively charged nucleus due to
Coulomb force.

e There is a BIG PROBLEM with this:

o As the electron moves in its circular orbit, it is
ACCELERATING.

o As you learned in Physics 212, accelerating
charges radiate electromagnetic energy.
®
o Consequently, an electron would continuously
lose energy and spiral into the nucleus in about
109 sec.

mm) The planetary model doesn’t lead to stable atoms.




Hydrogen Atom - Qualitative

Why doesn’t the electron collapse into the nucleus,
where its potential energy is lowest?

We must balance two effects:

As the electron moves closer to the nucleus,
its potential energy decreases (more negative):

However, as it becomes more and more
confined, its kinetic energy increases:

Therefore, the total energy is: >

. . hz [ H ”
E has a minimum at: |r = — =a,=0.053 nm T][‘ti BHohrtradlus
mke otr the H atom.

2

. 4
At this radius, E~-———=-13.6 eV e ground state energy

hz of the hydrogen atom.

One factor of e or e2 comes

. ’ . . , ‘ from the proton charge,
Heisenberg’'s uncertainty principle prevents the atom’s collapse. and one from the electron.
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Potential Energy in the Hydrogen Atom

To solve this problem, we must specify the potential
energy of the electron. In an atom, the
Coulomb force binds the electron to the nucleus.

This problem does not separate in Cartesian
coordinates, because we cannot write

U(xy,z) = U,(x)+U,(y)*U,(z). However, we can
separate the potential in spherical coordinates
(r,0,0), because:

U(r,0,0) = U/(r) + Uy(6) + Uy(0)

Ke?

- 0 0
-

Therefore, we will be able to write:

y(r.6,¢)=R(r)e(6)o(¢)

Question:

How many quantum numbers
will be needed to describe
the hydrogen wave function?
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Wave Function in Spherical

We saw that because U depends only on the radius,

the problem is separable. The hydrogen SEQ can be
solved analytically (but not by us). We will show you the
solutions and discuss their physical significance.

We can write: (I’,«9,¢) =R (I')Y,m ((9,¢)

H_J

There are three quantum numbers: What before
we called

n “principal” (n >1) 0(0)0 ()
| “orbital” (0 </<n-1)
m “magnetic” (-] <m < +/)

The Y, are called “spherical harmonics.”

Today, we will only consider /=0 and m = 0.
These are called “s-states”. This simplifies

the problem, because Y,,(6, ¢) is a constant

and the wave function has no angular dependence:

l//nOO (r’ 6’ ¢) = RnO(r)

Coordinates

These are states in which the
electron has no orbital angular
momentum. This is not possible
in Newtonian physics. (Why?)

Note:

Some of this nomenclature
dates back to the 19t century,
and has no physical significance.
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Radial Eigenstates of Hydrogen

Here are graphs of the s-state wave functions, R, (r) , for the electron in
the Coulomb potential of the proton. The zeros in the subscripts are a
reminder that these are states with / = 0 (zero angular momentum!).

2
a, = f >=0.053 nm
m_xe

You will not need to
memorize these

functions. -13.6 eV

You can prove these are solutions by

plugging into the ‘radial SEQ’ (Appendix). Lecture 16, p 21




ACT 2: Optical Transitions in Hydrogen

An electron, initially excited to the n = 3 energy level of

the hydrogen atom, falls to the n = 2 level, emitting a
photon in the process.

1) What is the energy of the emitted photon?
a)1.5eV b) 1.9 eV c)3.4eV

2) What is the wavelength of the emitted photon?
a)827nm Db)656 nm ¢) 365 nm

Lecture 16, p 22




Solution

An electron, initially excited to the n = 3 energy level of

the hydrogen atom, falls to the n = 2 level, emitting a
photon in the process.

1) What is the energy of the emitted photon?
a)1.5eV b) 1.9 eV c)3.4eV

£ -13.6 eV

n n2

AE, ., = —13.6{

1 1
—-— |eV
n? n?

1 1
E yoon =AE; ,, = —13.6(§—Zjev ~1.9 eV

2) What is the wavelength of the emitted photon?
a)827nm Db)656 nm ¢) 365 nm
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Solution

An electron, initially excited to the n = 3 energy level of

the hydrogen atom, falls to the n = 2 level, emitting a
photon in the process.

1) What is the energy of the emitted photon?
a)1.5eV b) 1.9 eV c)3.4eV
£ -13.6 eV

n n2

AE, . =—13.6(i2—i eV

2
n° n

1 1
E yoon =AE; ,, = —13.6£§—Zjev ~1.9 eV

2) What is the wavelength of the emitted photon?
a) 827 nm b) 656 nm |- C)365nm _____________________________________________________________________

hc 1240 eV-nm
~ 19eV

Atomic hydrogen

=656 nm

Question:
: . : Which transition is this?
You will measure several transitions in Lab. Q. =' 486 nm')' =
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Next week: Laboratory 4

Cross Focusing Light Collimating
Eyepiece hairs lens  Grating shield lens  Slit
Light source

|
N
Deflected ' __,,_m,,,ww;O/

“"eﬁﬁ“‘u — \
beam ™ I

Undeflected g
beam
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Probability Density of Electrons

ly|? = Probability density = Probability per unit volume o« Rfo for s-states.
The density of dots plotted below is proportional to Rfo.

1s state 2s state

A node in the radial
probability distribution.
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Radial Probability Densities for S-states

Summary of wave functions and radial probability densities

for some s-states.

The radial probability density has an extra
factor of r2 because there is more volume
at large r. Thatis, P.4(r) o< r’RZ,.

This means that:
The most likely ris not 0 !!!

Even though that's where
lw(r)|? is largest.

This is always a confusing point.
See the supplementary slide for
more detail.

radial wave functions

http://www.falstad.com/gmatom/

20a,
radial probability densities, P(r)
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Next Lectures

Angular momentum
“Spin”

Nuclear Magnetic Resonance
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Supplement: Separation of Variables (1)

In the 3D box, the SEQ is:

w(oy Oy Oy NOTE:
- 2m[ Pl oy° Y T b+l =57 Partial derivatives.

Let’s see if separation of variables works.
Substitute this expression for v into the SEQ:

w(x,y,z) =1(x)g(y)h(z)

h2
- 2m

NOTE:
Total derivatives.

Pf a?h
(gh ot dyﬂ’ g j +(U(x)+U(y)+U(2))fgh = Efgh

Divide by fgh:

n (1d2f 1d%g 1

J +(U(X)+U(y)+U(z)) =E

2m\f ox* gdy* hdz’
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Supplement: Separation of Variables (2)

Regroup:

2 2 2 2 2 2
—h—ld—ZJrU(x) + _n 1d§2]+U(y) + I 1d?+
2mf ox 2m g dy 2m h dz

A function of x A function of y A function of z

We have three functions, each depending on a different variable,
that must sum to a constant.
Therefore, each function must be a constant:

Each function, f(x), g(y), and h(z)
satisfies its own 1D SEQ.
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Supplement: Why Radial Probability Isn't
the Same as Volume Probability

Let’s look at the n=1, |=0 state (the “1s” state): wy(r,0,¢) oc R,,(r) oc &2,

[

So, P(r,0,¢) = y?2 oc @22, P(r,0,0)
This is the volume probability density.

If we want the radial probability density,

we must remember that: 0, 4a,
dV = r2 dr sind do d¢ '

We’'re not interested in the angular distribution, so to calculate P(r) we

must integrate over 6 and ¢. The s-state has no angular dependence,

so the integral is just 4n. Therefore, P(r) o« r2e-2a,, |

P(r)

The factor of r2 is due to the fact that there is more
volume at large r. A spherical shell at large r has
more volume than one at small r:

. Compare the volume of the two
shells of the same thickness, dr.
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Appendix: Solving the 'Radial’ SEQ for H
--deriving a, and E

Y 2 2
h iazr—’(e JR(r)—ER(r) , we get:

2m r dr r

o Substituting R(r)=Ne @ into (

R’ ] . .
—(—Zae oL atre™
2m r 7

« For this equation to hold for all r, we must have:

_ 32,2

e _?  AND S

2
Ke —Qar —ar
)— e = Fe

« Evaluating the ground state energy:
. —(197)?
E= 2 5 2 2 6 2
2mag~  2mcTag”  2(.51)(107)(.053)

=-13.6eV




