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Lecture 3:
Review, Examples and Phasors
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The Many The Many ““FathersFathers”” of QMof QM
� 1900 Planck “solves” the blackbody problem by postulating 
that the oscillators in the walls have quantized energy levels.

“Until after some weeks of the most strenuous work of my 
life, light came into the darkness, and a new undreamed-of 
perspective opened up before me…the whole procedure was 
an act of despair because a theoretical interpretation had to 
be found at any price, no matter how high that might be.”

� 1905 Einstein proposes that light energy is quantized –
”photons”

� 1913 Bohr proposes that electron orbits are quantized

� 1923 de Broglie proposes that particles behave like waves

� 1925 Pauli introduces “exclusion principle” – only 2 
electrons/orbital

� 1925 Heisenberg introduces matrix-formulation of QM

� 1926 Schrödinger introduces the wave-formulation of QM



HOMEWORK #1
� Monday is a holiday

� The University is closed all weekend

� There will be no office hours this weekend

� Homework #1 will be due on Thursday at 8 am.

� There will be extra office hours on Wednesday

� See the webpage
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Review: The Harmonic Waveform 
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A snapshot of y(x) at a fixed time, t:

This is review from Physics 211/212.

For more detail see Lectures 26 and 27 on the 211 website.
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Act 1
The speed of sound in air is a bit over 300 m/s, and the speed of 
light in air is about 300,000,000 m/s.  

Suppose we make a sound wave and a light wave that both have a 
wavelength of 3 meters. 

1. What is the ratio of the frequency of the light wave to that of the   
sound wave?

(a) About  1,000,000 (b) About 0.000001 (c) About  1000

2. What happens to the frequency if the light passes under water?

(a) Increases       (b) Decreases       (c) Stays the same

3. What happens to the wavelength if the light passes under water?

(a) Increases       (b) Decreases       (c) Stays the same
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Act 1 Act 1 -- SolutionSolution
The speed of sound in air is a bit over 300 m/s, and the speed of 
light in air is about 300,000,000 m/s.  

Suppose we make a sound wave and a light wave that both have a 
wavelength of 3 meters. 

1. What is the ratio of the frequency of the light wave to that of the   
sound wave?

(a) About  1,000,000 (b) About 0.000001 (c) About  1000

and
light light

sound sound

v fv
f 1,000,000 1,000,000

v fλ
= ≅ ⇒ ≅
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Act 1 Act 1 -- SolutionSolution
The speed of sound in air is a bit over 300 m/s, and the speed of 
light in air is about 300,000,000 m/s.  

Suppose we make a sound wave and a light wave that both have a 
wavelength of 3 meters. 

2. What happens to the frequency if the light passes under water?

(a) Increases       (b) Decreases       (c) Stays the same

3. What happens to the wavelength if the light passes under water?

(a) Increases       (b) Decreases       (c) Stays the same
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Act 1 Act 1 -- DiscussionDiscussion

Why does the wavelength change but not the frequency?

The frequency does not change because the time dependence 
in the air must match the time depencence at the air/water boundary.  
Otherwise, the wave will not remain continuous at the boundary as 
time progresses. 

Question: Do we ‘see’ frequency or wavelength?

Air Water

vair vwater

Continuity of the wave

at the air-water interface

(at all times) requires

that the frequencies

be the same.
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Review: Adding Sine Waves

Suppose we have two sinusoidal waves with the same A1, ω, and k.  
Suppose one starts at phase φ after the other:

( )1 1cos cos 2 cos cos
2 2

A A
β α β α

α β
− +   + =    

   

1 2y y+ ( )/ 2φ ( )/ 2kx tω φ− +

1    2 cos( / 2)  cos( / 2)y A kx tφ ω φ= − +

Use this trig identity:

y1 = A1 cos(kx - ωt) and y2 = A1 cos(kx - ωt + φ)

Spatial dependence 

of 2 waves at t = 0:

Resultant wave:

Amplitude Oscillation

y = y1 +y2

φ
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Example: Path-Length Dependent Phase
Each speaker alone produces intensity I1 = 1W/m2 at the listener, and f = 300 Hz.

Drive speakers in phase.  Compute the intensity I at the listener in this case:

d
 =
 3
 m

r1 = 4 m

Sound velocity:  v = 330 m/s

r 2

r1

Procedure:

1) Compute path-length difference: δ =

2) Compute wavelength: λ =

3) Compute phase difference: φ =

4) Write formula for resultant amplitude: A =

5) Compute the resultant intensity: I = A2 =
Nice demo on web:  www.falstad.com/interference



Lecture 3, p 11

Solution
Each speaker alone produces intensity I1 = 1W/m2 at the listener, and f = 300 Hz.

Drive speakers in phase.  Compute the intensity I at the listener in this case:

d
 =
 3
 m

r1 = 4 m

Sound velocity:  v = 330 m/s

r 2

r1

Procedure:

1) Compute path-length difference: δ = 5 m - 4 m = 1 m

2) Compute wavelength: λ = v/f = 330 m/s / 300 Hz = 1.1 m

3) Compute phase difference: φ = 2π(1 m / 1.1 m) = 5.71 rad = 327°
4) Write formula for resultant amplitude: A = 2A1cos(φ/2) = 2*1*cos(2.86) = -1.92

5) Compute the resultant intensity: I = A2 = 3.69 W/m2
The - sign is not significant.

We care about |A|.Nice demo on web:  www.falstad.com/interference
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Act 2: Speaker interference

r 2

r1

What happens to the intensity at the listener if we decrease the
frequency f by a small amount?

a. decrease b. stay the same c. increase

Hint:  How does intensity vary with φ when φ = 327°?
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What happens to the intensity at the listener if we decrease the
frequency f by a small amount?

a. decrease b. stay the same c. increase

Solution

r 2

r1

I

φ

φ = 327°

360°

f decreases:

� λ increases 

� δ/λ decreases 

� φ decreases 

� I decreases

Hint:  How does intensity vary with φ when φ = 327°?

Draw the graph 

of I(φ):
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Example: 2-slit interference

1. What is the angle of the second principle maximum?

2. What is the spacing ∆y between adjacent fringe maxima (i.e., ∆m = 1) on a 

screen 2m away?

A laser of wavelength 532 nm

is incident on two slits 

separated by 0.125 mm.
d θ

y

Intensity

L
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Solution

1. What is the angle of the second principle maximum?

First: Can we use the small angle approximation?

d = 125 µm;  λ = 0.532 µm  � d >> λ � θ is small.

d sinθm = mλ ~ dθm � θm ≈ m(λ/d) = 2 (0.532/125) = 0.0085 rad = 0.49° (small!)

2. What is the spacing ∆y between adjacent fringe maxima (i.e., ∆m = 1) on a 

screen 2m away?

A laser of wavelength 532 nm

is incident on two slits 

separated by 0.125 mm.
d θ

y

Intensity

L
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Solution

1. What is the angle of the second principle maximum?

First: Can we use the small angle approximation?

d = 125 µm;  λ = 0.532 µm  � d >> λ � θ is small.

d sinθm = mλ ~ dθm � θm ≈ m(λ/d) = 2 (0.532/125) = 0.0085 rad = 0.49° (small!)

2. What is the spacing ∆y between adjacent fringe maxima (i.e., ∆m = 1) on a 

screen 2m away?

A laser of wavelength 532 nm

is incident on two slits 

separated by 0.125 mm.
d θ

y

Intensity

L

∆y ≈ L(θ2 – θ1) ≈ L(2 – 1)(λ/d) = Lλ/d = (2 m)(0.532 µm)/125 mm = 0.0085 m ~ 1 cm

Could have also used 1 – 0 (or 6 – 5).
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How many interference peaks may be observed?

(Hint: Does the small angle approximation hold?)

a. 0 b. 1 c. 3 d. 4 e. ∞

Act 3: 2-slit interference
S1

S2

We now increase the wavelength by 20 and 

decrease the slit spacing by 10, i.e., direct a 

10.6-µm laser onto two slits separated by 

12.5 µm.
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How many interference peaks may be observed?

(Hint: Does the small angle approximation hold?)

a. 0 b. 1 c. 3 d. 4 e. ∞

Solution

We now increase the wavelength by 20 and 

decrease the slit spacing by 10, i.e., direct a 

10.6-µm laser onto two slits separated by 

12.5 µm.

S1

S2

First: Can we use the small angle approximation?

d = 12.5 µm;  λ = 5.32 µm  � d ~ λ � θ is not small.

d sinθm = mλ Because sinθm ≤ 1, m < d/λ = 12.5/10.6 = 1.17

∴ mmax = 1 ( θ1 = 58° )  

Note: This ALWAYS has a solution for m = 0 � there’s always a central peak

Note: The pattern is symmetric, so there’s a peak corresponding to m = -1 too.
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Coherent and Incoherent Waves
We only observe interference when the sources have a definite

phase difference.  In this case, the sources are said to be coherent.

Examples:

� Sound waves from speakers driven by electrical signals that have the 

same frequency and a definite phase.

� Laser light.  In a laser, all the atoms emit light with the same frequency 

and phase.  This is a quantum effect that we’ll study later in the course.

Laser

Incoherent waves: The phase relation is random.

Waves from two unrelated sources.

� Examples: light from two points on the sun or two atoms on a light 

bulb filament, or two people singing the same note.

� Incoherent intensities add.  The average of constructive and 

destructive interference is no interference!

The laser light is also all 

going the same direction.
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““Beam me up Scotty Beam me up Scotty ––
It ate my It ate my phasorphasor!!””
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Phasors

A1

αααα

ααααA

φφφφ
A1

Lets find the resultant amplitude of 
two waves using phasors.

Suppose the amplitudes are the same.  Represent 

each wave by a vector with magnitude (A1) and 

direction (φ).  One wave has φ = 0.

Isosceles triangle:  α = φ/2.  So,

This is identical to our previous result !

More generally, if the phasors have different amplitudes 
A and B:

C2 = A2 + B2 + 2AB cos φ

12 cos
2

 =  
 

φ
A A

Here φ is the 

external angle.φ
A

C
B

• See the supplementary slide.

• See text: 35.3, 36.3, 36.4.

• See Physics 212 lecture 20.

• Phasors make it easier to 

solve other problems later. 
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PhasorsPhasors for 2for 2--SlitsSlits
� Plot the phasor diagram for different φφφφ:

A1

A1

φ
A

φ=45°
8/λδ =

A1

A1

φ
A

φ=90°
4/λδ =

A1

A1

φ

A

φ=135°
8/3λδ =

A1

A1

φ=180°

φ

2/λδ =

A1 A1

A

φ=360 °
λδ =

A1 A1

A

φ=0
0=δ

A1

A1

φ

A

φ=225°
8/5λδ =

A1

A1 φ

A

φ=270°
4/3λδ =

A1

A1

φ

A

φ=315°
8/7λδ =

I

0

4I
1

φ0 2ππππ-2ππππ

θ∗λλλλ/d-λλλλ/d

y((((λλλλ/d)L-(λλλλ/d)L

*Small-angle approx. 
assumed here
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Act 4: Multiple sources 

At given distance far from the openings, the light from each independently 

has intensity I1. What is the total intensity when all three openings are open?

a. 3I1 b. 9I1 c. cannot be determined

Consider light now coming 

from three openings, arranged 

in an equilateral triangle.
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Act 4: Multiple sources 

At given distance far from the openings, the light from each independently 

has intensity I1. What is the total intensity when all three openings are open?

a. 3I1 b. 9I1 c. cannot be determined

Therefore, Itot = A2 = (3 A1)
2 = 9 I1

Consider light now coming 

from three openings, arranged 

in an equilateral triangle.

A1 A1

A = 3A1

A1

In general, , Itot = A2 = (3 A1)
2 = 9 I1
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Multiple-Slit Interference

What changes if we increase the number of slits, 

e.g., N = 3, 4, 1000, . . .

(for now we’ll go back to very small slits, so             
we can neglect diffraction from each of them) 

First look at the principal maxima.

For equally spaced slits:

If slit 1 and 2 are in phase with each other, 

than slit 3 will also be in phase, etc.

The positions of the principal interference maxima 

are the same for any number of slits!

S3

S2

P

y

L

d

S1

δ

2δ

d sinθ = mλ
We will almost always consider equally spaced slits.
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Multiple-Slit Interference (2)

The positions of the principal maxima occur at φ = 0, ±2π, ±4π, ...

where φ is the phase between adjacent slits. θ = 0, ±λ/d, ±2λ/d, ...

The intensity at the peak of a principal maximum goes as N2.

3 slits: Atot = 3A1 ⇒ Itot = 9I1.  N slits: IN = N2I1.

Between two principal maxima there are N-1 zeros and 

N-2 secondary maxima ⇒ The peak width ∝ 1/N.

The total power in a principal maximum is proportional to N2(1/N) = N.

0 2π−2π

I4

0

16I1
N=4

0 2π−2π

I5

0

25I1
N=5

0 2π−2π

I3

0

9I1
N=3

10

20

−λ/d          0         λ/d
φ
θ

φ
θ−λ/d          0         λ/d −λ/d          0         λ/d

φ
θ
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Phasors for  N-Slit Interference

0 2π−2π

I

0

16I1
N=4

0 2π−2π

I

0

25I1
N=5

0 2π−2π

I

0

9I1
N=3

10

20

−λ/d          0         λ/d
φ
θ

φ
θ−λ/d          0         λ/d −λ/d          0         λ/d

φ
θ

Drawn here for N = 5:

Principal maxima: φ = 0, ±2π, etc.

Zeros. φ = m(2π/N), for m = 1 to N-1.

φ

φ = 2π / N
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Phasor Exercise

Two speakers emit equal intensity (call the amplitude A = 1) sound

of frequency f = 256 Hz.  The waves are in phase 

at the source.  Suppose that the path difference to 

the observer is δ = 0.3 m (speaker 1 is closer).

v = 330 m/s.

Draw a phasor diagram that describes the two

waves at the observer and the resulting wave.

What is the resulting amplitude?

1

2
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Solution

Two speakers emit equal intensity (call the amplitude A = 1) sound

of frequency f = 256 Hz.  The waves are in phase 

at the source.  Suppose that the path difference to 

the observer is δ = 0.3 m (speaker 1 is closer).

v = 330 m/s.

Draw a phasor diagram that describes the two

waves at the observer and the resulting wave.

What is the resulting amplitude?

1

2

The wavelength is λ = v/f = 1.29 m, so the phase

difference is  φ = 2π(δ/λ) = 1.46 radians = 83.7°.
Notes: 

• The two phasors have the same length (amplitude).

• We can always pick one phasor to be horizontal.

• Source 2 is farther from the observer, so its phasor lags behind.

Find the resultant by adding the phasors.  The resulting 

amplitude is approximately √2.  You’ll need to use the 

algebraic solution to get a more accurate answer.

1

2

1

2

Phasors rotate 

counterclockwise.

Angular speed = ω.
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Phasor Exercise 2

1

2

Suppose the intensity of speaker 2 is twice  that

of speaker 1.  Everything else is the same as in 

the previous exercise.  Draw the phasor diagram 

that describes this situation.
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Solution

1

2
The phase difference is unchanged: φ = 83.7°.
Now, the length of phasor 2 is √2 larger.

(Remember that phasors are amplitudes.)

So we have and

Note that the algebraic solution we wrote before does not apply here,

because the amplitudes aren’t equal.  You can use some trigonometry

to calculate the length of the third side of the triangle.

Law of cosines: c2 = a2 + b2 +2ab cosφ = 1 + 2 + 2√2×0.11 = 3.31 (c = 1.82)

1

2

Suppose the intensity of speaker 2 is twice  that

of speaker 1.  Everything else is the same as in 

the previous exercise.  Draw the phasor diagram 

that describes this situation.

1

2
φ
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Supplement: Phase shift and
Position or Time Shift

Because the wave is oscillating both in time and position, we can consider φ
to be either a time or position shift:

Time: Position:

y = A1 cos(kx - ωt + φ) y = A1 cos(kx - ωt + φ)

= A1 cos(kx - ω(t - φ/ω)) = A1 cos(k(x+φ/k) - ωt)

= A1 cos(kx - ω(t - φT/2π)) = A1 cos(k(x+φλ/2π) - ωt)

= A1 cos(kx - ω(t - δt)) = A1 cos(k(x-δx) - ωt)

The time shift: δt/T = φ/2π The position shift: δx/λ = -φ/2π

Positive φ shifts to later times. Positive φ shifts to negative position.
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Supplement: Phasor Math

We want to manipulate Acos(ωt+φ).  Use the fact that the 

x-component of a 2-dimensional vector is Acos(θ).

If θ is changing with time, θ = ωt, the vector is rotating, 

and the x component is Acos(ωt+φ).  That’s what we want.

If we have two quantities that have the same frequency, 

but different amplitudes and phases:

A1cos(ωt+φ1) and A2cos(ωt+φ2)

we can use vector addition to calculate their superposition.

x

A

y

θ

Acos(θ)

x

A

y

ωt+φ

Acos(ωt+φ)

x

A1

y

A2

x

A1

y

A2

x

A1

y

A2

φ1-φ2

It is conventional to draw 

one phasor horizontal.  

Because the phasors are 

rotating, this merely means 

we are looking at them at a 

particular time.


