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The work function:

� Φ is the minimum energy needed to strip 
an electron from the metal. 

� Φ is defined as positive.

� Not all electrons will leave with the maximum 
kinetic energy (due to losses).

Photoelectric Effect
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Conclusions:
• Light arrives in “packets” of energy (photons).

• Ephoton = hf

• Increasing the intensity increases # photons, not the photon energy.

Each photon ejects (at most) one electron from the metal.

Recall: For EM waves, frequency and wavelength are related by  f = c/λ.

Therefore: Ephoton = hc/λ = 1240 eV-nm/λ
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Photoelectric Effect Example

1. When light of wavelength λ = 400 nm shines on lithium, the stopping 

voltage of the electrons is Vstop = 0.21 V.  What is the work function of 

lithium?
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Photoelectric Effect:  Solution

Φ = hf - eVstop

= 3.1eV - 0.21eV

= 2.89 eV

1. When light of wavelength λ = 400 nm shines on lithium, the stopping 

voltage of the electrons is Vstop = 0.21 V.  What is the work function of 

lithium?

Instead of hf, use hc/λ: 1240/400 = 3.1 eV

For Vstop = 0.21 V,   eVstop = 0.21 eV
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Act 1

1. If the workfunction of the material increased, 

how would the graph change?

a. Increased slope

b. Increased fo
c. Both a and b
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2. We now shine on light with frequency 2f0.  What effect does 

doubling the intensity (i.e., the power) of the incident light have on the 

current of emitted electrons? 

a. doubles

b. quadruples

c. stays the same decreases

d. decreases
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Act 1

1. If the workfunction of the material increased, 

how would the graph change?

a. Increased slope

b. Increased fo
c. Both a and b

V
st
op
(v
)

f (x1014 Hz)

0

1

2

3

0 5 10 15

f0

The y intercept moves down, so the slope is unchanged 

and f0 increases � the photons need more energy to be 

able to free the electrons from the increased binding.

2. We now shine on light with frequency 2f0.  What effect does 

doubling the intensity (i.e., the power) of the incident light have on the 

current of emitted electrons? 

a. doubles

b. quadruples

c. stays the same decreases

d. decreases
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2. We now shine on light with frequency 2f0.  What effect does 

doubling the intensity (i.e., the power) of the incident light have on the 

current of emitted electrons? 

a. doubles

b. quadruples

c. stays the same decreases

d. decreases
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1. If the workfunction of the material increased, 

how would the graph change?
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The y intercept moves down, so the slope is unchanged 

and f0 increases � the photons need more energy to be 

able to free the electrons from the increased binding.

Because the frequency is higher than f0, each 

incident photon has a chance to emit an electron. 

Doubling the number of photons doubles the 

number of photoelectrons.
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Measurement

How does what we measure determine whether we observe wave 

or particle properties?

Waves have wavelength, λ, and frequency, f.  So, if we measure 

momentum (wavelength) or energy (frequency), we have observed 

the wave properties of our object. 

Particles have position (and trajectories).  If we measure position 

(e.g., which slit it went through) we have observed a particle 

property.  That’s why the “which slit” measurement destroys the 

interference pattern.

Note that particle and wave properties are incompatible.  One can’t 

simultaneously measure both wavelength and position.  This is the 

basis of Heisenberg’s “uncertainty principle”. (more later)
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Exercise
We can use our rules for quantum mechanical inter-

ference to understand classical interference too! 

Consider a Michelson interferometer, into which is 

directed an 8-mW laser with a 1-cm beam diameter. 

detector

We now put an iris in arm 1, centered on the beam, 

that reduces its diameter to only 0.71 cm, so that 

the power coming to the detector just from that arm 

is only 1 mW (and still 2 mW from the other path, 

whose beam is still 1 cm in diameter).  

As we move the arm 1 mirror outward, which 

of the following curves might describe the power 

measured on the detector? 

(Hint: what’s required for interference.)

a. dash dot curve (varies from 0 to 8 mW)

b. red curve (varies from 1 to 5 mW)

c. solid curve (varies from 0.17 to 5.83 mW, 

with an average of 3 mW)

d. dashed curve (constant at 3 mW)

e. orange curve (constant at 4 mW)
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Solution

Interference can only occur if the contributing 
processes are indistinguishable. In this problem, 
that’s only the case for photons inside the 0.71-
cm diameter disk, which could have come from 
either arm.  Inside that disk, we have perfect 
interference (0 � 4 mW).  But the detector also 
sees the non-interfering 1 mW from the outer 
ring from arm 2. This adds as a background.

We can use our rules for quantum mechanical inter-

ference to understand classical interference too. 

Consider a Michelson interferometer, into which is 

directed an 8-mW laser with a 1-cm beam diameter. 

detector

We now put an iris in arm 1, centered on the beam, 

that reduces its diameter to only 0.71 cm, so that 

the power coming to the detector just from that arm 

is only 1 mW (and still 2 mW from the other path, 

whose beam is still 1 cm in diameter).  

As we move the arm 1 mirror outward, which 

of the following curves might describe the power 

measured on the detector? 

(Hint: what’s required for interference.)

b. red curve (varies from 1 to 5 mW)
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“Double-slit” Experiment for Electrons

Electrons are accelerated to 50 keV
� λ = 0.0055 nm

Central wire is positively charged �
bends electron paths so they 
overlap.

A position-sensitive detector records 
where they appear.

<< 1 electron in system at any time

Exposure time:   1 s 10 s 5 min 20 min

Video by A. TONOMURA (Hitachi) --pioneered electron holography.
http://www.hqrd.hitachi.co.jp/rd/moviee/doubleslite.wmv

See also this Java simulation: http://www.quantum-physics.polytechnique.fr/index.html



Lecture 8, p 13

Real standing waves of electron
density in a “quantum corral”

IBM
Almaden

Single 
atoms (Fe)

Cu

Observation of an electron wave “in a box”
Image taken with a scanning tunneling microscope (more later)
(Note: the color is not real! – it is a representation of the

electrical current observed in the experiment)
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Application of Matter Waves:
Electron Microscopy

The ability to resolve tiny objects improves as the wavelength decreases.  
Consider the microscope: 

The objective lens of a good optical microscope has f/D ≅ 2, 

so with λ ~ 500 nm the microscope has a resolution of dmin ~ 1 µm. 

We can do much better with matter waves because electrons with 

energies of a few keV have wavelengths much less than 1 nm.

The instrument is known as an “electron microscope”. 

D

f
.fd cmin λα 221=≈

Rayleigh’s

criterion:

The minimum d for which we 

can still resolve two objects is 

αc times the focal length:D
c

λ
α 22.1=
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(not interference 
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α
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~ focal length of lens if image 

plane is at a large distance.

the “f-number”
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Application of Matter Waves:  
Electron Microscopy

Scientists and engineers - such as those here at the Materials Research 

Lab and the Beckman Institute - use “electron microscopy” to study 

nanometer-scale structures in materials and biological systems

Imaging technology at Beckman: http://www.itg.uiuc.edu/

Compound eye of a flyCu-In alloy
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Example: Imaging a Virus

object

Electron   

optics

D

f

electron gunYou wish to observe a virus with a diameter of 20 nm, much 

too small to observe with an optical microscope. Calculate the 

voltage required to produce an electron wavelength suitable 

for studying this virus with a resolution of dmin = 2 nm.    The 

“f-number” for an electron microscope is quite large: f/D ≈ 100. 

Hint: First find λ required to achieve dmin.

Then find E of an electron from λ.
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Solution

( )

2 2

22

1.505 
5.6 k

2 0.0164 

h eV nm
E eV

m nmλ
⋅

= = =

min 1.22d f
D

λ
≈

min 2 0.0164 
1.22 1.22

D D
d nm nm

f f
λ    

≈ = =   
   

To accelerate an electron to an energy of 5.6 keV requires 5.6 kilovolts .
(The convenience of electron-volt units)

object

Electron   

optics

D

f

electron gunYou wish to observe a virus with a diameter of 20 nm, much 

too small to observe with an optical microscope. Calculate the 

voltage required to produce an electron wavelength suitable 

for studying this virus with a resolution of dmin = 2 nm.    The 

“f-number” for an electron microscope is quite large: f/D ≈ 100. 

Hint: First find λ required to achieve dmin.

Then find E of an electron from λ.

Note:

1.22λ/D is the diffraction angle, θ
f is the lever arm,

So, θf is the spot size.
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Interference of larger particlesInterference of larger particles

� Matter-wave interference has now been demonstrated with electrons, 
neutrons, atoms, small molecules, BIG molecules, & biological molecules

� Recent Example:  Interference of C60, a.k.a. “fullerenes”, “buckyballs”

[A. Zeilinger (U. Vienna), 1999]

Mass = (60 C)(12 g/mole) = 1.2 x 10-24 kg 
2

223
. . 3 2.1 10 /

2 2

p
K E kT p kTm kg m s

m

−= ≈ ⇒ = = ×

λ = h/p = 2.9 pm   (c.f. C60 is ~ 1 nm across!)
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FYI: More on Interference of larger particlesFYI: More on Interference of larger particles

� Using a velocity selector, they could make the atoms more 
monochromatic ���� improved interference:

� In 2003 interference was observed with porphyrin, a bio. molecule:

Original 
distribution

Narrowed
distribution

Now they’re trying to 
do something like this 
with a  virus!
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Where do we go from here? Where do we go from here? 

Two approaches pave the way:

Uncertainty principle 

• In quantum mechanics one can only calculate a probability 

distribution for the result of a measurement.  

• The Heisenberg uncertainty principle provides a way to use simple 

arguments and a simple inequality to draw important conclusions 

about quantum systems.

Schrödinger equation (next week)

• This differential equation describes the evolution of the quantum 

wave function, Ψ.  Ψ itself has no uncertainty.

• |Ψ|2 will then tell us the probabilities of obtaining various 

measurement results.  That’s where the uncertainty enters.
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Heisenberg Uncertainty PrincipleHeisenberg Uncertainty Principle
All QM objects (we think that includes everything have wave-like properties.  

One mathematical property of waves is:

∆k�∆x ≥ 1 (See the supplementary slide for some discussion) k = 2π/λ

Examples:

• Infinite sine wave:

A definite wavelength must extend forever.

• Finite wave packet:

A wave packet requires a spread*

of wavelengths.

Using p = h/λ = ħk, we have: 

ħ (∆k�∆x ≥ 1)   ⇒ (ħ∆k)�∆x ≥ ħ ⇒ ∆p�∆x ≥ ħ

This relation is known as the Heisenberg Uncertainty Principle.

It limits the accuracy with which we can know the position and momentum of objects.

* We will not use the statistically correct definition of “spread”,  which, in this context, we also call “uncertainty”.

∆x

We need a spread of wavelengths in 

order to get destructive interference.
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Diffraction and the 
Uncertainty Principle

Remember single-slit diffraction:

Let’s analyze this problem using the uncertainty principle.

Suppose a beam of electrons of momentum p approaches a slit of width a.  

How big is the angular spread of motion after it passes through the slit?

Wavelength: λ
Slit width: a

Diffraction angle: θ = λ/a
angle to first zero

λ
a θ

p
a θ



Lecture 9, p 23

Solution

Consider the momentum uncertainty in the y-direction.

• Before the slit, the y-position is not known, so the uncertainty of py can be zero.

We know that py = 0.

• Just after the slit, the y-position has an uncertainty of about a/2.  
Therefore py must have an uncertainty  ∆py  ≥ 2ℏ/a.

This corresponds to a change of direction by an angle, θ = ∆py / p = 2ℏ/ap.

Using p = h/λ, we have θ = λ/(πa).

This is almost the diffraction answer: θ = λ/a.  The extra factor of π is due to our 

somewhat sloppy treatment of the uncertainty.

The important point is that the uncertainty principle results because matter 

behaves as a wave.

p
a θ

y

p

py
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Example

The position of an electron in the lowest-energy state of a hydrogen atom; 

is known to an accuracy of about ∆x = 0.05 nm (the radius of the atom).  

What is the minimum range of momentum measurements? Velocity?
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The position of an electron in the lowest-energy state of a hydrogen atom; 

is known to an accuracy of about ∆x = 0.05 nm (the radius of the atom).  

What is the minimum range of momentum measurements? Velocity?

Solution

24

24

31

6

Heisenberg's Uncertainty Principle

/ / 2

2.1 10 J s/m

2.1 10 kg m/s

/ 9.1 10 kg

2.3 10 m/s

e e

x p

p x h

v p m m

π
−

−

−

∆ ∆ ≥

∆ ≥ ∆ =

= × ⋅

= × ⋅

∆ = ∆ = ×

= ×

ℏ

ℏ ℏ
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Why Why ““UncertaintyUncertainty””??
“Uncertainty” refers to our inability to make definite predictions.

Consider this wave packet:

• Where is the object?

• What is its momentum?

The answer is, We don’t know. We can’t predict the result of either 

measurement with an accuracy better than the ∆x and ∆p given to us 

by the uncertainty principle.

Each time you look, you find a local blip that is in a different place (in fact, it is 

your looking that causes the wavefunction to “collapse”!).  

If you look many times, you will find a probability distribution that is spread out.

But you’re uncertain about where that local blip will be in any one of the times 

you look -- it could be anywhere in the spread.

An important point: You never observe the wave function itself.

The wave merely gives the probabilities of obtaining the various measurement results.  

A measurement of position or momentum  will always result in a definite result.         

You  can infer the properties of the wave function by repeating the measurements      

(to measure the probabilities), but that’s not the same as a direct observation.
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Uncertainty Principle –Implications
The uncertainty principle explains why electrons in atoms don’t simply fall 

into the nucleus: If the electron were confined too close to the nucleus 

(small ∆x), it would have a large ∆p, and therefore a very large average 

kinetic energy (≈ (∆p)2/2m).

The uncertainty principle does not say “everything is uncertain”.

Rather, it tells us what the limits of uncertainty are when we make 

measurements of quantum systems. 

Some classical features, such as paths, do not exist precisely, because 

having a definite path requires both a definite position and momentum. 

One consequence, then, is that electron orbits do not exist. The atom is 

not a miniature solar system.

Other features can exist precisely. For example, in some circumstances 

we can measure an electron’s energy as accurately as technology allows. 

Serious philosophical issues remain open to vigorous debate, e.g., whether 

all outcomes or only one outcome actually occur.
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Supplement: Wave UncertaintySupplement: Wave Uncertainty

Mathematically, one can produce a localized 

function by superposing sine waves with a 

“spread” of wave numbers, ∆k:   ∆k�∆x ≥ 1.

This is a result of Fourier analysis, which most of you will learn in Math.

It means that making a short wave packet 

requires a broad spread in wavelengths.  

Conversely, a single-wavelength wave would extend forever.

So far, this is just math.  The physics comes in when we make the wavelength-
momentum connection: p = h/λ = ℏk.

Example:

How many of you have experienced a close lightning strike (within a couple hundred feet)?  If 

you were paying attention, you may have noticed that the sound, which is a very short pulse, is 

very weird.  That weirdness is a result of the very broad range of frequencies that is needed to 

construct a very short pulse.  One doesn’t normally experience such a broad frequency range.


