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“Anyone who can contemplate 
quantum mechanics without getting 
dizzy hasn’t understood it.”

--Niels Bohr
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Special (Optional) Lecture
“Quantum Information”
� One of the most modern applications of QM

� quantum computing
� quantum communication – cryptography, teleportation
� quantum metrology

� Prof. Kwiat will give a special 214-level lecture on this topic
� Sunday, Feb. 24
� 3 pm, 141 Loomis

� Attendance is optional, but encouraged.
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Lecture 17:
Atomic States, Angular Momentum  

& Selection Rules
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Today

Schrödinger’s Equation for the Hydrogen Atom

• Radial wave functions

Angular Momentum

• Quantization of Lz and L2
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To solve this problem, we must specify the potential 

energy of the electron.  In an atom, the 

Coulomb force binds the electron to the nucleus.

This problem does not separate in Cartesian 

coordinates, because we cannot write 

U(x,y,z) = Ux(x)+Uy(y)+Uz(z).  However, we can 

separate the potential in spherical coordinates

(r,θ,φ), because:

U(r,θ,φ) = Ur(r) + Uθ(θ) + Uφ(φ)

Potential Energy in the Hydrogen Atom
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Therefore, we will be able to write:

( ) ( ) ( ) ( ), ,r R rψ θ φ θ φ= Θ Φ

Question:

How many quantum numbers 

will be needed to describe 

the hydrogen wave function?
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Wave Function in Spherical Coordinates

We saw that because U depends only on the radius, 

the problem is separable.  The hydrogen SEQ can be 

solved analytically (but not by us).  Here we show the 

solutions and their physical significance.

We can write:

There are three quantum numbers:

• n “principal” (n  ≥ 1)

• l “orbital” (0  ≤ l < n-1)

• m “magnetic” (-l  ≤ m ≤ +l)

x

y
zr

 θ

φ

00 0( , , ) ( )n nr R rψ θ φ =

The Ylm are called “spherical harmonics.”

First, we will only consider l = 0 and m = 0.

These are called “s-states”.  This simplifies 

the problem, because Y00(θ,φ) is a constant

and the wave function has no angular dependence:

( ) ( ) ( ), , ,nlm nl lmr R r Yψ θ φ θ φ=

Note:

Some of this nomenclature 

dates back to the 19th century,

and has no physical significance.

What before

we called

( ) ( )θ φΘ Φ

These are states in which the

electron has no orbital angular

momentum.  This is not possible

in Newtonian physics. (Why?)
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Radial Eigenstates of Hydrogen

Here are graphs of the s-state wave functions, Rno(r) , for the electron in 
the Coulomb potential of the proton.  The zeros in the subscripts are a 
reminder that these are states with l = 0 (zero angular momentum!).
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You will not need to 

memorize these 

functions. -13.6 eV

-3.4 eV

-1.5 eV

0

E

You can prove these are solutions by 

plugging into the ‘radial SEQ’ (Appendix).



Lecture 17, p 8

An electron, initially excited to the n = 3 energy level of 
the hydrogen atom, falls  to the n = 2 level, emitting a 
photon in the process.  

1) What is the energy of the emitted photon?

a) 1.5 eV b) 1.9 eV c) 3.4 eV

2) What is the wavelength of the emitted photon?

a) 827 nm b) 656 nm c) 365 nm

ACT 1: Optical Transitions in Hydrogen
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An electron, initially excited to the n = 3 energy level of 
the hydrogen atom, falls  to the n = 2 level, emitting a 
photon in the process.  

1) What is the energy of the emitted photon?

a) 1.5 eV b) 1.9 eV c) 3.4 eV

2) What is the wavelength of the emitted photon?

a) 827 nm b) 656 nm c) 365 nm

Solution
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λ (nm)

Atomic hydrogen

An electron, initially excited to the n = 3 energy level of 
the hydrogen atom, falls  to the n = 2 level, emitting a 
photon in the process.  

1) What is the energy of the emitted photon?

a) 1.5 eV b) 1.9 eV c) 3.4 eV

2) What is the wavelength of the emitted photon?

a) 827 nm b) 656 nm c) 365 nm

Solution
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You will measure several transitions in Lab.
Question:

Which transition is this?

(λ = 486 nm)We’ll see next lecture that there are other 

constraints on which transitions can occur.
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Next week: Laboratory 4
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Probability Density of Electrons

|ψ|2 = Probability density = Probability per unit volume ∝ for s-states.

The density of dots plotted below is proportional to      . 
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Radial Probability Densities for S-states

Summary of wave functions and radial probability densities
for some s-states.  
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The radial probability density has an extra 

factor of r2 because there is more volume 

at large r.  That is, Pn0(r) ∝ .

This means that:  

The most likely r is not 0 !!!

Even though that’s where 

|ψ(r)|2 is largest.

http://www.falstad.com/qmatom/
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0nr R

This is always a confusing point.

See the supplementary slide for

more detail.
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What is the normalization constant for the 
hydrogen atom ground state?

/

100 10( , , ) ( ) or ar NR r Neψ θ φ −= =
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Wave Function Normalization



Lecture 17, p 15

What is the normalization constant for the 
hydrogen atom ground state?

The probability density is |ψ|2 = N2 exp(-2r/ao).

In 3D, this means “probability per unit volume”.

We require that the total probability = 1:    ∫|ψ|2 dV = 1

dV = r2 sinθ dr dθ dφ

With spherical symmetry, the angular integrals give 4π, so we are left with:
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“You can look it up!”
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0.5

0
0

ψ(r) = R10 (r)

/( ) or ar Ne−ψ =

4a0

rs

Estimate the probability of finding the electron within 
a small sphere of radius rs = 0.2 ao at the origin.

Probability Calculation
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Estimate the probability of finding the electron within 
a small sphere of radius rs = 0.2 ao at the origin.

If it says “estimate”, don’t  integrate.

The wave function is nearly constant near r = 0:

Simply multiply |ψ|2 by the volume ∆V = (4/3)πrs
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At what radius are you most likely to find the 
electron?
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Maximum Radial Probability
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At what radius are you most likely to find the 
electron?

Looks like a no-brainer.  r = 0, of course!

Well, that’s not the answer.

You must find the probability P(r)∆r that the electron is in 

a shell of thickness ∆r at radius r. For a given ∆r the 

volume, ∆V, of the shell increases with radius.

The radial probability has an extra factor of r2:

Set dP/dr = 0 to find: rmax = a0 !
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Solution

∆V = 4πr2 ∆r ∆r

r

More volume

at larger r.

No volume 

at r = 0.
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Summary of S-states of H-atom

The “s-states” (l=0, m=0) of the Coulomb potential have 
no angular dependence.  In general:

because Y00(θ,φ) is a constant.

Some s-state wave functions (radial part):
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S-state wave functions are 

spherically symmetric.

|ψ20(r,θ,φ)|2 :

http://www.falstad.com/qmatom/
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The Ylm(θ,φ) are known as “spherical harmonics”.

They are related to the angular momentum of the electron.

Total Wave Function of the H-atom

We will now consider non-zero values of the other two 
quantum numbers:  l and m.

• n “principal” (n  ≥ 1)

• l “orbital” (0  ≤ l < n-1)

• m “magnetic” (-l  ≤ m ≤ +l)

( ) ( ) ( ), , ,nlm nl lmr R r Yψ θ φ θ φ=

x

y

z r

θ

φ

* The constraints on l and m come from the boundary conditions one must impose on

the solutions to the Schrodinger equation. We’ll discuss them briefly.

*
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Quantized Angular Momentum

Linear momentum depends on the wavelength (k=2π/λ):

Angular momentum depends on the tangential component of the 

momentum.  Therefore Lz depends on the wavelength as one moves 

around a circle in the x-y plane.  Therefore, a state with Lz has a similar 

form:

An important boundary condition:

An integer number of wavelengths must fit around the circle.

Otherwise, the wave function is not single-valued.

This implies that m = 0, ±1, ±2, ±3, P

and Lz = 0, ±ħ, ±2ħ, ±3ħ, P

Angular momentum is quantized!!

Reminder:

eimφ = cos(mφ) + i sin(mφ)

 where ( ) ikxp k x eψ= ∝ℏ

 where ( ) ( , ) im

Z lmL m r Y e φψ θ φ= ∝ ∝
�

ℏ

http://www.falstad.com/qmatom/

We’re ignoring 

R(r) for now.

Re(ψ)

φ

Lz
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Summary of quantum numbers for the H-atom orbitals:

The l Quantum Number

In the angular wave function ψlm(θ,φ)
the quantum number l tells us the total angular momentum L.

L2 = Lx
2 + Ly

2 + Lz
2 is also quantized. The possible values of L2 are:

The quantum number m reflects the component of angular momentum 

about a given axis.

2 2( 1)  where 0,1, 2, ...L = + =ℏl l l

Principal quantum number: n = 1, 2, 3, P.

Orbital quantum number: l = 0, 1, 2, P, n-1

Orbital ‘magnetic’ quantum number: m = -l, -(l-1), P 0, P (l-1),  l

Wave functions can be eigenstates of both L2 and LZ. 

For spherically symmetric potentials, like H-atom, they can also be 

eigenstates of E.  Such states are called “orbitals”.

 where m 0, 1, 2, ...zL m= = ± ±ℏ
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( )2 2( 1)  not L = + ℏ ℏ
2

l l l

Angular Momentum & Uncertainty Principle  

Note that                                     .

Also, we describe angular momentum using only two numbers, l and m.

Q: Why can’t we specify all three components (e.g., L =(0,0,l) so that L2= l2?

A: The uncertainty principle doesn’t allow us to know that both Lx = 0

and Ly = 0 unless Lz = 0 also.

Proof by contradiction: Assume L =(0,0,l).

, so if L points along the z-axis, both r and p lie in the x-y plane.

This means that ∆z = 0 and ∆pz = 0, violating the uncertainty principle.

Thus, L must have a nonzero Lx or Ly, making L2 somewhat larger.

We can’t specify all three components of the angular momentum vector.

This logic only works for L ≠ 0.   L = (0,0,0) is allowed.  It’s the s-state.

All physical quantities are subject to uncertainty relations,

not just position and momentum.

L r p= ×
� � �
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Classical Picture of L-Quantization

e.g., l = 2 ℏℏℏ 6)12(2)1l(lL 22 =+=+=
L = √6 ℏLz

+2ℏ

+ℏ

0

-ℏ

-2ℏ

L r p= ×
� � �
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We’ve just seen that we cannot have the total orbital angular momentum 
vector of an atom pointing definitely along the z-axis.

If we measure Lz = ℏ, what can we say about Lx, the x-component of the 

angular momentum?

a) Lx = 0 

b) Lx = ℏ

c) Lx = -ℏ

d) any of the above

e) none of the above

Act 2
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We’ve just seen that we cannot have the total orbital angular momentum 
vector of an atom pointing definitely along the z-axis.

If we measure Lz = ℏ, what can we say about Lx, the x-component of the 

angular momentum?

a) Lx = 0 

b) Lx = ℏ

c) Lx = -ℏ

d) any of the above

e) none of the above

Solution

As soon as we determine the angular momentum projection along one 

axis, we lose definite knowledge of its value along any perpendicular axis.  
We will again find Lx = m ℏ , but we don’t know what m is until we do the 

measurement.  And if we find m = 1, i.e., Lx = m ℏ, then we won’t know 

anything about Lz except that Lz = m ℏ , where again we don’t know m.
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Next Week

Multi-electron atoms

Covalent bonds in molecules

Electron energy bands in solids

QM in everyday life

Next Time

Electron orbitals in atoms

Electron ‘spin’ and the Stern-Gerlach experiment
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Let’s look at the n=1, l=0 state (the “1s” state):  ψ(r,θ,φ) ∝ R10(r) ∝ e-r/a0.

So, P(r,θ,φ) = ψ2 ∝ e-2r/a0.  

This is the volume probability density.

If we want the radial probability density,

we must remember that:

dV = r2 dr sinθ dθ dφ
We’re not interested in the angular distribution, so to calculate P(r) we

must integrate over θ and φ.  The s-state has no angular dependence, 

so the integral is just 4π.  Therefore, P(r) ∝ r2e-2r/a0.

The factor of r2 is due to the fact that there is more 

volume at large r. A spherical shell at large r has

more volume than one at small r:

Supplement: Why Radial Probability Isn’t 
the Same as Volume Probability
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Compare the volume of the two 

shells of the same thickness, dr. 



Appendix: Solving the Appendix: Solving the ‘‘RadialRadial’’ SEQ for H SEQ for H 
----deriving deriving aaoo and Eand E

� For this equation to hold for all r, we must have:
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