“All of modern physics is governed by
that magnificent and thoroughly
confusing discipline called quantum
mechanics...lt has survived all tests and
there Is no reason to believe that there
Is any flaw in it....\We all know how to
use it and how to apply it to problems;
and so we have learned to live with the
fact that nobody can understand it.”

--Murray Gell-Mann
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Particles in (In)finite Potential Wells
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This week and last week are critical for the course:

Week 3, Lectures 7-9: Week 4, Lectures 10-12:
Light as Particles Schrodinger Equation
Particles as waves Particles in infinite wells, finite wells
Probability Simple Harmonic Oscillator
Uncertainty Principle

Midterm Exam Monday, week 5
It will cover lectures 1-12 (except Simple Harmonic Oscillators)
Practice exams: Old exams are linked from the course web page.
Review Sunday before Midterm

Office hours: Sunday and Monday

Next week:

Homework 4 covers material in lecture 10 — due on Thur. after midterm.

We strongly encourage you to look at the homework before the midterm!
Discussion: Covers material in lectures 10-12. There will be a quiz.
Lab: Go to 257 Loomis (a computer room).

You can save a lot of time by reading the lab ahead of time —

It's a tutorial on how to draw wave functions.
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Last Time

Schrodinger’s Equation (SEQ)

A wave equation that describes spatial and time dependence of W(x,t).

Expresses KE +PE = E,;
Second derivative extracts -k? from wave function.

Constraints that y(x) must satisfy

Existence of derivatives (implies continuity).
Boundary conditions at interfaces.

Infinitely deep 1D square well (“box”)

Boundary conditions — Discrete energy spectrum:

E, = n’E,, where E, = h?/8mL>2.
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Today

“Normalizing” the wave function

General properties of bound-state wave functions

Particle in a finite square well potential
Solving boundary conditions

Comparison with infinite-well potential
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Constraints on the Form of w(x)

\w(X)]> corresponds to a physically meaningful quantity:
the probability density of finding the particle near x.
To avoid unphysical behavior, y(x) must satisfy some conditions:

v(X) must be single-valued, and finite.
Finite to avoid infinite probability density.

y(X) must be continuous, with finite dy/dx.
dy/dx is related to the momentum.

In regions with finite potential, d>y/dx? must be finite.

To avoid infinite energies.
This also means that dy/dx must be continuous.

There is no significance to the overall sign of y(x).
It goes away when we take the absolute square.

{In fact, we will see that y(x,t) is usually complex!}
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Act 1

1. Which of the following wave functions corresponds to a particle
more likely to be found on the left side?

(a) (b)

/\ N\

< NS\
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Solution

1. Which of the following wave functions corresponds to a particle
more likely to be found on the left side?

(a) (b)

A\

X

None of them!

(a) is clearly symmetrical. we

(b) might seem to be “higher” on the left / \
than on the right, but only the absolute
square determines the probability.
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Originally published under the title, *‘Zur Quantenmechanik der Stossvorginge,'” Zeitschrift fiir
Physik, 37, 863-67 (1926); reprinted in Dokumente der Naturwissenschaft, I, 4852 (1962) and in M.
Born (1963); translation into English by JA'W.and WH.Z.,, 1981.

.2 ON THE QUANTUM MECHANICS OF COLLISIONS

[Preliminary communication]'

MAax BoOrN

Through the investigation of collisions it is argued that quantum
mechanics in the Schrodinger form allows one to describe not only
stationary states but also quantum jumps.

If one translates this result into terms of particles, only one interpretation is
possible. @, (x, f8, y) gives the probability* for the electron, arriving from the z-
direction, to be thrown out into the direction designated by the angles «, 8, v, with
the phase change 6. Here its energy t has increased by one quantum Av? at the

* Addition in proof: More careful consideration shows that the probability is proportional to the
square of the quantity @, ..
“Again an idea of Einstein’s gave me the lead. He had tried to make the duality of
particles — light quanta or photons - and waves comprehensible by interpreting the

square of the optical wave amplitudes as probability density for the occurrence of

photons. This concept could at once be carried over to the W-function: | ¥ |? ought to

represent the probability density for electrons (or other particles). It was easy to assert

this, but how could it be proved?” M. Born, Nobel Lecture (1954).
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Probabilities

Often what we measure in an experiment is the probability density, |y(x)|?.
. nrw oy = . nir Probabili er

v (0= Bsin| " | estecien (o = B sin’ ) M
L L (in 1-dimension)

A

U=

L x
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Probability and Normalization

We now know that v, (Xx)= B, sin(nTﬂ xj . How can we determine B,?

We need another constraint. It is the requirement that
total probability equals 1.

Integral under

‘ |\|j|2 the curve = 1

/\/\/\!L

The probability density at x is |y (x)|2: n=3
0

Therefore, the total probability is the integral:

In our square well problem, the integral is
simpler, because v =0 for x <0 and x > L:

Requiring that P,, = 1 gives us: |B, = \/%

Lecture 11, p 11




Probability Density
/

In the infinite well: P(x) = N? sin? (nTﬂxj (Units are m™, in 1D)

Notation: The constant is typically written as “N”, and
is called the “normalization constant”. For the square well:

One important difference with the classical result:

For a classical particle bouncing back and forth in a well, the probability
of finding the particle is equally likely throughout the well.

For a quantum particle in a stationary state, the probability distribution is
not uniform. There are “nodes” where the probability is zero!

BR/AVAVAM

L
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Example of a microscopic potential well
-- a semiconductor "quantum well"

Deposit different layers of atoms on a substrate crystal:

- AlGaAs  GaAs AlGaAs

Quantum wells like these are used for light
emitting diodes and laser diodes, such as the _
ones in your CD player. An electron has lower energy in GaAs

The quantum-well laser was invented by Charles than in AIGaA.S'“ It ma”y_be trapped in
Henry, PhD UIUC ’65. the well — but it “leaks” into the

This and the visible LED were developed at UIUC by Surroundmg region to some extent
Nick Holonyak. Lecture 11, p 13




Particle in a Finite Well (1)

What if the walls of our “box” aren’t infinitely high?
We will consider finite U,, with E < U, so the particle is still trapped.

This situation introduces the very important concept of “barrier penetration”.

As before, solve the SEQ in the three regions.

Region Il:
U = 0, so the solution is the same as before:
v, (X)=B,sinkx + B, cos kx

We do not impose the infinite well boundary
conditions, because they are not the same here.
We will find that B, is no longer zero.

Before we consider boundary conditions,
we must first determine the solutions in regions | and lll.
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Particle in a Finite Well (2)

Regions | and llI: Because E < U, these regions
U(x) = U,, and E < U, are “forbidden” in classical particles.

2
The SEQ d d‘ﬂﬁ” + ZhT(E—U)W(X) =0 can be written:
X

2 //”‘— \\\\\\ . .
d* y(x) 22 3 + In region Il this
dx? o was a + sign.

2m
—

where: K = A —E) U, > E:

K is real.

The general solution to this equation is:
i . Kx —Kx
Region I ';”/(X) = C1e + Cze

Region Ill: ¥/,,(x) = D,e"* + D,

C,, C,, D,, and D,, will be determined by the boundary conditions.
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Particle in a Finite Well (3)

Important new result! (worth putting on its own slide)

For quantum entities, there is a finite probability amplitude, v, to find
the particle inside a “classically-forbidden” region, i.e., inside a barrier.

VACIE C1eKX T Cze_KX
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Act 2

In region lll, the wave function has the form

W, (X)= D1eKX T Dze_KX

1. As x 2 o, the wave function must vanish.
(why?) What does this imply for D, and D,?

0

b.D,=0 c.D,;andD, are both nonzero.

2. What can we say about the coefficients C, and C, for the wave
N BT e o
function in region I~ ';”/(X) _ C1e X | Cze X

b.C,=0 c.C,and C, are both nonzero.
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Solution

In region lll, the wave function has the form

W, (X)= D1eKX T Dze_KX

1. As x 2 o, the wave function must vanish
(why?). What does this imply for D, and D,?

0

a.D,=0 b.D,=0 c.D,;andD, are both nonzero.

Since e > w0 as x 2 «, D, must be 0.

. What can we say about the coefficients C, and C, for the wave
N BT e o
function in region I~ ';”/(X) _ C1e X | Cze X

b.C,=0 c.C,and C, are both nonzero.
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Solution

In region lll, the wave function has the form

W, (X)= D1eKX T Dze_KX

. As X 2 oo, the wave function must vanish
(why?). What does this imply for D, and D,?

0

a.D,=0 b.D,=0 c.D,;andD, are both nonzero.

Since e > w0 as x 2 «, D, must be 0.

. What can we say about the coefficients C, and C, for the wave
N BT e o
function in region I~ ';”/(X) _ C1e X | Cze X

a.C,=0 b.C,=0 c.C,and C, are both nonzero.

Kx is negative for x < 0. e** 2> was x 2-w. So, C, must be 0.
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Particle in a Finite Well (4)

Summarizing the solutions in the 3 regions:
Region I: w,(X) = C1eKX

Region Il:  w,(x) = B, sin(kx)+ B, cos(kx)
Region lll: W, (X) = Dze‘KX

As with the infinite square well, to determine
parameters (K, k, B,, B,, C,, and D,) we must
apply boundary conditions.

Useful to knpw:

In an éljowec‘s{ region,
v curves toward 0.

In a forbidden region,
v curves away from 0.
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Particle in a Finite Welﬂl )

U(x)
The boundary conditions are not the same as
for the finite well. We no longer require that “

v=0atx=0and x=L.

Instead, we require that y(x) and dy/dx be
continuous across the boundaries:

v Is continuous dy/dx is continuous

dy, dy
Atx=0: W, =W, dx’ = dX”

_ d‘//// _ d‘/////
Atx=L WY,y =W¥y p = e

Unfortunately, this gives us a set of four transcendental equations.
They can only be solved numerically (on a computer).
We will discuss the qualitative features of the solutions.
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Particle in a Finite Well (6)

What do the wave functions for a particle
in the finite square well potential look like?

They look very similar to those for the
infinite well, except ...

The particle has a finite probability
to “leak out” of the well !!

Some general features of finite wells:

Due to leakage, the wavelength of v, is longer for the finite well.
Therefore E_ is lower than for the infinite well.

K depends on U, - E. For higher E states, e’*x decreases more slowly.
Therefore, their v penetrates farther into the forbidden region.

A finite well has only a finite number of bound states. = Very nice Java applet:
If E > U,, the particle is no longer bound. http://www.falstad.com/gm1d/
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Act 3

1. Which has more bound states?

a. particle in a finite well

b. particle in an infinite well

c. both have the same number of
bound states.

2. For a particle in a finite square well, which of the following
will decrease the number of bound states?
a. decrease well depth U,

b. decrease well width L
c. decrease m, mass of particle

3. Compare the energy E, ;. Of the lowest state of a finite
well with the energy E; ;. snite Of the lowest state of an infinite
well of the same width L.

da. E1,finite < E1,infinite b E1,ﬁnite = E1,im‘inite C. E1,ﬁnite = E1,im‘inite




Solution

1. Which has more bound states?

a. particle in a finite well A pqrticle in an
b. particle in an infinite well infinite well has an

c. both have the same number of infinite number of
bound states. states.

2. For a particle in a finite square well, which of the following
will decrease the number of bound states?
a. decrease well depth U,

b. decrease well width L
c. decrease m, mass of particle

3. Compare the energy E, ;. Of the lowest state of a finite
well with the energy E; ;. snite Of the lowest state of an infinite
well of the same width L.

da. E1,finite < E1,infinite b E1,ﬁnite = E1,im‘inite C. E1,ﬁnite = E1,im‘inite




Solution

1. Which has more bound states?

a. particle in a finite well A pqrticle in an
b. particle in an infinite well infinite well has an

c. both have the same number of infinite number of
bound states. states.

2. For a particle in a finite square well, which of the following

will decrease the number of bound states?

a. decrease well depth U, All three choices are correct:
b. decrease well width L a makes fewer energy levels have E < U,

c. decrease m, mass of particle| b and c raise the energy of each energy
level.

NOTE: For a particle in a 1-dimensional potential well, there is
always at least one bound state.




Solution

3. Compare the energy E, ;. Of the lowest state of a finite
well with the energy E; ;. s.ite Of the lowest state of an infinite
well of the same width L.

da. E1,finite < E1,infinite b E1,ﬁnite = E1,im‘inite C. E1,ﬁnite = E1,im‘inite

Look at the wavefunctions for the two situations: www.falstad.com/qm1d

y

L y(x)

0]

The wavelength in the finite well is longer, because it is not required to go to
zero at x = 0 and x = L (it “leaks” out a little). Thus, the momentum p = h/A is
smaller, and so is the energy. That’s true in general; the less one confines an

object, the lower its energy can be - a consequence of the Heisenberg Kruse Demo
Uncertainty Principle. (wvfn)




Summary

Particle in a finite square well potential

Solving boundary conditions:
You'll do it with a computer in lab. We described it qualitatively here.

Particle can “leak” into forbidden region.
We'll discuss this more later (tunneling).

Comparison with infinite-well potential:

The energy of state n is lower in the finite square well potential
of the same width.

We can understand this from the uncertainty principle.
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