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Lecture 12:
Particle in 1D boxes, Simple 

Harmonic Oscillators
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This week and last week are critical for the course:

Week 3, Lectures 7-9: Week 4, Lectures 10-12:

Light as Particles Schrödinger Equation

Particles as waves Particles in infinite wells, finite wells

Probability

Uncertainty Principle

Next week:

Homework 4 covers material in lecture 10 – due on Thur. after midterm.

We strongly encourage you to look at the homework before the midterm!

Discussion: Covers material in lectures 10-12.  There will be a quiz. 

Lab: Go to 257 Loomis (a computer room).

You can save a lot of time by reading the lab ahead of time –

It’s a tutorial on how to draw wave functions.

Midterm Exam Monday, week 5

It will cover lectures 1-11 and some aspects of lecture 12 (not SHOs).

Practice exams: Old exams are linked from the course web page.

Review Sunday before Midterm

Office hours: Sunday and Monday
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Properties of Bound StatesProperties of Bound States
Several trends exhibited by the particle-in-box states are generic to 

bound state wave functions in any 1D potential (even complicated ones).

1: The overall curvature of the wave function increases with increasing kinetic 

energy.

2: The lowest energy bound state always has finite kinetic 

energy -- called “zero-point” energy.  Even the lowest 

energy bound state requires some wave function 

curvature (kinetic energy) to satisfy boundary conditions.

3: The nth wave function (eigenstate) has (n-1) zero-crossings.

Larger n means larger E (and p), which means more wiggles.

4: If the potential U(x) has a center of symmetry (such as the center of the well 

above), the eigenstates will be, alternately, even and odd functions about that 

center of symmetry.
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The wave function below describes a quantum particle in a range ∆x:

1. In what energy level is the particle?

n =

(a) 7 (b) 8 (c) 9

2. What is the approximate shape of the potential 

U(x) in which this particle is confined?

ψ(x)

x

∆x

(c)
U(x)

E

∆x

(a)

E

∆x

U(x) (b)

E

∆x

U(x)

Act 1
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The wave function below describes a quantum particle in a range ∆x:

1. In what energy level is the particle?

n =

(a) 7 (b) 8 (c) 9

2. What is the approximate shape of the potential 

U(x) in which this particle is confined?

ψ(x)

x

∆x

(c)
U(x)

E

∆x

(a)

E

∆x

U(x) (b)

E

∆x

U(x)

Eight nodes.
Don’t count the boundary conditions.

U(x)

Solution
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The wave function below describes a quantum particle in a range ∆x:

1. In what energy level is the particle?

n =

(a) 7 (b) 8 (c) 9

2. What is the approximate shape of the potential 

U(x) in which this particle is confined?

ψ(x)

x

∆x

(c)
U(x)

E

∆x

(a)

E

∆x

U(x) (b)

E

∆x

U(x)

Wave function is symmetric.

Wavelength is shorter in the middle.

Not symmetric

U(x)

KE smaller

in middle

Eight nodes.
Don’t count the boundary conditions.

Solution
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Bound State Properties:  ExampleBound State Properties:  Example

Consider these features of ψ:

1: 5th wave function has __ zero-crossings.

2: Wave function must go to zero at ____ and  

____.

3: Kinetic energy is _____ on right side of well, 

so the curvature of ψ is ______ there.

E5

U=∞ U=∞

0 L x

Uo

x

ψ

Let’s reinforce your intuition about the properties of bound state wave functions 

with this example:

Through nano-engineering, one can create a step in the potential seen by an 

electron trapped in a 1D structure, as shown below.  You’d like to estimate the 

wave function for an electron in the 5th energy level of this potential, without 

solving the SEQ. The actual wavefunction depends strongly on the parameters 

Uo and L.  Qualitatively sketch a possible 5th wave function:
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Bound State Properties:  SolutionBound State Properties:  Solution

Consider these features of ψ:

1: 5th wave function has __ zero-crossings.

2: Wave function must go to zero at ____ and  

____.

3: Kinetic energy is _____ on right side of well, 

so the curvature of ψ is ______ there.

E5

U=∞ U=∞

0 L x

Uo

x

ψ

Let’s reinforce your intuition about the properties of bound state wave functions 

with this example:

Through nano-engineering, one can create a step in the potential seen by an 

electron trapped in a 1D structure, as shown below.  You’d like to estimate the 

wave function for an electron in the 5th energy level of this potential, without 

solving the SEQ.  The actual wavefunction depends strongly on the parameters 

Uo and L.  Qualitatively sketch a possible 5th wave function:

4

x = 0

x = L

lower

smaller

ψ and dψ/dx must 

be continuous here.

The wavelength is longer.
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This is a basic problem in “Nano-science”.  It’s a simplified (1D) model of an 

electron confined in a quantum structure (e.g., “quantum dot”), which 

scientists/engineers make, e.g., at the UIUC Microelectronics Laboratory.

Particle in a Box

www.kfa-juelich.de/isi/
newt.phys.unsw.edu.au

Quantum dots

As a specific important example, consider 
a quantum particle confined to a region,   
0 < x < L, by infinite potential walls.  
We call this a “one-dimensional (1D) box”.

U = 0  for 0 < x < L

U = ∞ everywhere else

U(x)

0 L

∞ ∞

We already know the form of ψ when U = 0: sin(kx) or cos(kx). 

However, we can constrain ψ more than thisJ
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Particle in Infinite Square Well Potential

U = ∞ U = ∞

0 xL

En

n=1

n=2

n=3

The discrete En are known as “energy eigenvalues”:
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2. If we decrease the size of the dot, 
the difference between two energy levels 
(e.g., between n = 7 and 2) will

a) decrease

b) increase

c) stay the same

1.  An electron is in a quantum “dot”.  If we 
decrease the size of the dot, the ground 
state energy of the electron will

a) decrease

b) increase

c) stay the same

Act 2
U=∞∞∞∞ U=∞∞∞∞

0 xL

En

n=1

n=2

n=3
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1.  An electron is in a quantum “dot”.  If we 
decrease the size of the dot, the ground 
state energy of the electron will

a) decrease

b) increase

c) stay the same

Solution
U=∞ U=∞

0 xL

En

n=1

n=2

n=3

2

1 28

h
E

mL
=

The uncertainty principle, once again!

2. If we decrease the size of the dot, 
the difference between two energy levels 
(e.g., between n = 7 and 2) will

a) decrease

b) increase

c) stay the same
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1.  An electron is in a quantum “dot”.  If we 
decrease the size of the dot, the ground 
state energy of the electron will

a) decrease

b) increase

c) stay the same

U=∞ U=∞

0 xL

En

n=1

n=2

n=3

2

1 28

h
E

mL
=

En =  n2 E1

E7 - E2 = (49 – 4)E1 = 45E1

Since E1 increases, so does ∆E.

The uncertainty principle, once again!

2. If we decrease the size of the dot, 
the difference between two energy levels 
(e.g., between n = 7 and 2) will

a) decrease

b) increase

c) stay the same

Solution



• A family of magic sizes of hydrogenated Si 

nanoparticles

• No magic sizes > 20 atoms for  non-

hydrogenated clusters

• Small clusters glow: color depends on size ����

• Used to create Si nanoparticle

microscopic laser:

“Quantum Confinement” – size of material affects 

“intrinsic” properties

M. Nayfeh (UIUC) : Discrete uniform Si nanoparticles

1 nm

Blue

1.67 nm

Green

2.15 nm

Yellow

2.9 nm

Red

• Transition from bulk to molecule-like in Si



Lecture 12, p 15

Probabilities

n=1

|ψ|2

0 xL

n=2

|ψ|2

0 xL

|ψ|2

0 xL
n=3

ψ
U=∞ U=∞

0 xL

ψ

0 xL

ψ

0 xL

Often what we measure in an experiment is the probability density, |ψ(x)|2.

( ) sinn

n
x N x

L

π
ψ  =  

 
Wavefunction = 

Probability amplitude

2 2 2( ) sinn

n
x N x

L

π
ψ  =  

 

Probability per 

unit length     

(in 1-dimension)

node

Probability 

density = 0
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Probability Example

2 2 2( ) sinn

n
x N x

L

π
ψ  =  

 

Consider an electron trapped in a 1D well with L = 5 nm.  
Suppose the electron is in the following state:

|ψ|2

0 x5 nm

N2

a) What is the energy of the electron in this state (in eV)?

b) What is the value of the normalization factor squared N2?

c) Estimate the probability of finding the electron within ±0.1 nm of the 
center of the well?  (No integral required. Do it graphically.)
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Solution

2 2 2( ) sinn

n
x N x

L

π
ψ  =  

 

Consider an electron trapped in a 1D well with L = 5 nm.  
Suppose the electron is in the following state:

|ψ|2

0 x5 nm

N2

a) What is the energy of the electron in this state (in eV)?

b) What is the value of the normalization factor squared N2?

c) Estimate the probability of finding the electron within ±0.1 nm of the 
center of the well?  (No integral required. Do it graphically.)

2
2 2

1 2

1.505 
3,       3 0.135 eV

4(5 )
n

eV nm
n E E n

nm

⋅
= = = =

= = =⇒= 2 2 -12
2

1 0.4 nmL
tot L
P N N

2 2

middleProbability ( ) (0.2 nm) 0.08x Nψ= ∆ ≈ = [(sin(3πx/L))2 ≈ 1 for x ≈ L/2] 

This works because the entire interval is very close to the middle peak.
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Consider a particle in the n = 2 state of a box.

a) Where is it most likely to be found?

b) Where is it least likely to be found?

c) What is the ratio of probabilities for the

particle to be near x = L/3 and x = L/4?

Probability Example

U=∞

ψ(x)

0 L

n=2

x

U=∞

L/4 L/3
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Solution:

a) x = L/4 and x = 3L/4. Maximum probability is at max |ψ|. 

b) x = 0, x = L/2, and x = L. Minimum probability is at the nodes.

The sine wave must have nodes at x = 0, x = L,

and, because n = 2, at x = L/2 as well.
c) ψ(x) = Nsin(2πx/L)

Prob(L/3) / Prob(L/4)

= |ψ(L/3)|2 / |ψ(L/4)|2

= sin2(2π/3) / sin2(π/2)

= 0.8662 = 0.75

Solution

U=∞

ψ(x)

0 L

n=2

x

U=∞

L/4 L/3

Prob(x)

0 L x

Consider a particle in the n = 2 state of a box.

a) Where is it most likely to be found?

b) Where is it least likely to be found?

c) What is the ratio of probabilities for the

particle to be near x = L/3 and x = L/4?
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U→∞U→∞ U(x)

x

Another very important potential is 
the harmonic oscillator:

U(x) = ½ κ x2 ω = (κ/m)1/2

Why is this potential so important?

• It accurately describes the potential for 
many systems.  E.g., sound waves.

• It approximates the potential in almost 
every system for small departures from 
equilibrium.  E.g., chemical bonds.

-5

0

5

10

0 0.5 1 1.5

r (nm)

U (eV)

ro

Taylor expansion of 

U near minimum.

Chemical 

bonding 

potential

To a good approximation,

everything is a harmonic oscillator.

Harmonic Oscillator Potential
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The differential equation that describes the HO is too difficult
for us to solve here.  Here are the important features of the 
solution.

The most important feature is that 
the energy levels are equally spaced: En = (n+1/2)ħω .

The ground state (n = 0) does not have E = 0.
Another example of the uncertainty principle.

Spacing between vibrational levels of molecules 

in atmospheric CO2 and H2O are in the infrared 

frequency range.
∆E = ℏω = hf ~ 0.01 eV

This is why they are important greenhouse gases.

n=3 ℏω7
2

Energy

n=0

n=1 ℏω

n=2 ℏω

3
2

5
2

ℏω1
2

...

E

r

Molecular vibration

Beware!! The numbering convention is not

the same as for the square well.

ω is the classical 

oscillation frequency

Harmonic Oscillator (2)
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2 2
2

2

( ) 1
( ) ( )

2 2

d x
x x E x

m dx

ψ
κ ψ ψ− + =

ℏ

To obtain the exact eigenstates and associated 
allowed energies for a particle in the HO potential, 
we would need to solve this SEQ:

This is solvable, but not here, not now J

However, we can get a good idea of what ψn(x) looks 
like by applying our general rules.

The important features of the HO potential are:

• It’s symmetrical about x = 0.

• It does not have a hard wall (doesn’t go to ∞ at finite x).

U→∞U→∞ U(x)

x

Harmonic Oscillator Wave Functions
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Consider the state with energy E.  There are 
two forbidden regions and one allowed region.

Applying our general rules, we can then say:

• ψ(x) curves toward zero in region II and away 
from zero in regions I and III.

• ψ(x) is either an even or odd function of x.

Let’s consider the ground state:

• ψ(x) has no nodes.

• ψ(x) is an even function of x.

This wave function resembles the square well
ground state.  The exact functional form is 
different—a ‘Gaussian’—but we won’t need to 
know it in this course:

U→∞U→∞ U(x)

x

E

I II III

U→∞U→∞ U(x)

x

HO Wave Functions (2)

22 a2/x
0n e    )x( −

= ∝ψ
κm

 2 ℏ
=a
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For the excited states, use these rules:

• Each successive excited state has one more node.

• The wave functions alternate symmetry.

Unlike the square well, the allowed region 

gets wider as the energy increases, so the 

higher energy wave functions oscillate over

a larger x range. (but that’s a detailJ)

U→∞U→∞

x

n=0 n=1n=2 n=3

U(x)

ψ(x)

HO Wave Functions (3)
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Harmonic Oscillator Exercise

A particular laser emits at a wavelength λ = 2.7 µm.  It operates by 

exciting hydrogen fluoride (HF) molecules between their ground and 

1st excited vibrational levels.  Estimate the ground state energy of the 

HF molecular vibrations.  
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Recall:

Ephoton = hc/λ = (1240 eV-nm)/2.7mm = 0.46 eV

and: (by energy conservation)

Ephoton = ∆∆∆∆E = E1 - E0 = ℏℏℏℏωωωω = 2E0

Therefore,

E0 = ½ ℏω = 0.23 eV

Solution

ℏℏℏℏωωωω

½ℏℏℏℏωωωω

n=1

n=0

A particular laser emits at a wavelength λ = 2.7 µm.  It operates by 

exciting hydrogen fluoride (HF) molecules between their ground and 

1st excited vibrational levels.  Estimate the ground state energy of the 

HF molecular vibrations.  


