"But why must I treat the measuring device classically? What will happen to me if I don't??" --Eugene Wigner
"There is obviously no such limitation - I can measure the energy and look at my watch;
then I know both energy and time!"
--L. D. Landau, on the time-energy uncertainty principle

Lecture 14: Superposition \& Time-Dependent Quantum States

Act 0

The midterm exam was:

a. Just right
b. Too easy
c. Too hard
d. Too long
e. Too long and too hard

The Most Difficult Midterm Question

Last Week

Time-independent Schrodinger's Equation (SEQ):

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+U(x) \psi(x)=E \psi(x)
$$

- It describes a particle that has a definite energy, E.
- The solutions, $\psi(x)$, are time independent (stationary states).

We considered three potentials, $\mathrm{U}(\mathrm{x})$:
Infinite square well

- Boundary conditions \rightarrow only certain allowed energies (and corresponding "energy eigenstates")

Finite-depth square well

- Particle can "leak" into forbidden region.
- Comparison with infinite-depth well.

Harmonic oscillator

- Energy levels are equally spaced.
- A good approximation in many problems.

Today

Time dependent SEQ:
Superposition of states and particle motion

Measurement in quantum physics

Time-energy uncertainty principle

Time-Dependent SEQ

To explore how particle wave functions evolve with time, which is useful for a number of applications as we shall see, we need to consider the time-dependent SEQ:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x, t)}{d x^{2}}+U(x) \Psi(x, t)=i \hbar \frac{d \Psi(x, t)}{d t}
$$

Changes from the time-independent version:

- $\mathrm{E} \psi \rightarrow$ in $\mathrm{d} \Psi / \mathrm{dt} \quad$ We no longer assume a definite E.
- $\psi(x) \rightarrow \Psi(x, t) \quad$ The solutions will have time dependence.
- $i=\sqrt{ }(-1)$ appears The solutions will be complex.

This equation describes the complete time and space dependence of a quantum particle in a potential $\mathrm{U}(\mathrm{x})$.
It replaces the classical particle dynamics law, $F=m a$.
The SEQ is linear in Ψ, and so the Superposition Principle applies:
If Ψ_{1} and Ψ_{2} are solutions to the time-dependent SEQ, then so is any
linear combination of Ψ_{1} and Ψ_{2} (example: $\Psi=0.6 \Psi_{1}+0.8 / \Psi_{2}$)

Review of Complex Numbers

The equation, $e^{i \theta}=\cos \theta+i \sin \theta$, might be new to you. It is a convenient way to represent complex numbers. It also (once you are used to it) makes trigonometry simpler.
a. Draw an Argand diagram of $e^{i \theta}$.

The Argand diagram of a complex number, A, puts $\operatorname{Re}(A)$ on the x-axis and $\operatorname{Im}(A)$ on the y-axis. Notice the trig relation between the x and y components. θ is the angle of A from the real axis. In an Argand diagram, $\mathrm{e}^{i \theta}$ looks like a vector of length 1, and components $(\cos \theta, \sin \theta)$.
b. Suppose that θ varies with time, $\theta=\omega$. How does the Argand diagram behave?

At $t=0, \theta=0$, so $A=1$ (no imaginary component).
As time progresses, A rotates counterclockwise
with angular frequency ω.
This is the math that underlies phasors.

The quantity, ce ${ }^{i \theta}$ (c and θ both real), is a complex number of magnitude $|\mathrm{c}|$. The magnitude of a complex number, A, is $|A|=\sqrt{ }\left(A^{*} A\right)$, where A^{*} is the complex conjugate of A.

Act i

$$
i \equiv \sqrt{-1}
$$

1. What is (-i)i ?

$$
\begin{array}{lll}
\text { a. }-\mathrm{i} & \text { b. }-1 & \text { c. }+1
\end{array}
$$

2. What is $1 / i$?

$$
\begin{array}{lll}
\text { a. }-1 & \text { b. }-i & \text { c. }+i
\end{array}
$$

3. What is $\left|e^{i \phi}\right|^{2}$?

$$
\begin{array}{lll}
\text { a. } 0 & \text { b. } e^{2 i \phi} & \text { c. } 1
\end{array}
$$

Solution

$$
i \equiv \sqrt{-1}
$$

1. What is $(-i)$?

$$
\begin{array}{llll}
\text { a. }-\mathrm{i} & \text { b. }-1 & \text { c. }+1 & (-i) i=-i^{2}=-(-1)=+1
\end{array}
$$

2. What is $1 / \mathrm{i}$?

$$
\begin{array}{lllll}
\text { a. }-1 & \text { b. }-\mathrm{i} & \text { c. }+\mathrm{i} & \frac{1}{i}=\left(\frac{1}{i}\right)\left(\frac{i}{i}\right)=\frac{i}{-1}=-i
\end{array}
$$

3. What is $\left|e^{i \phi}\right|^{2}$?
a. 0
b. $\mathrm{e}^{2 i \phi}$
c. 1

$$
\begin{aligned}
\left|e^{i \phi}\right|^{2} \equiv\left(e^{i \phi}\right)^{*}\left(e^{i \phi}\right) & =\left(e^{-i \phi}\right)\left(e^{i \phi}\right) \\
\text { This is the definition } & =e^{-i \phi+i \phi}=e^{0}=1
\end{aligned}
$$ of the magnitude of a complex number.

Time-dependence of Energy Eigenstates

The time-independent SEQ is just a special case of the time-dependent SEQ. So, if $\Psi(x, t)$ is a state with definite energy, it is a solution to both equations.
Both equations have the same left-hand side, so the right sides must be equal:
RHS of time
ind. SEQ

$$
E \Psi(x, t)=i \hbar \frac{d \Psi(x, t)}{d t} \underbrace{}_{\substack{\text { RHS of time } \\ \text { dep. SEQ }}}
$$

This equation has the solution:

$$
\Psi(x, t)=\psi(x) e^{-i \omega t} \text { with } \omega=\frac{E}{\hbar}
$$

Notes:

- $\psi(x)$ is not determined.

We need the LHS for that.

- $\mathrm{E}=\hbar \omega=\mathrm{hf}$, as expected.
Ψ is complex. However, we are interested in $|\Psi|^{2}$,
because that's what we measure.

$$
|\Psi(x, t)|^{2}=\left(\psi^{*}(x) e^{+i \omega t}\right)\left(\psi(x) e^{-i \omega t}\right)=|\psi(x)|^{2} \quad \text { This is always a real number. }
$$

So, for an energy eigenstate:
the probability density, $|\Psi|^{2}$, has no time dependence! (i.e., it's a "stationary state".)

We don't actually need the time-independent SEQ, but if we know we're dealing with energy eigenstates, the math is simpler.

Example: Motion of a Free Particle

A free particle moves without applied forces; so set $\mathrm{U}(\mathrm{x})=0$.
The SEQ is now reasonably simple:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x, t)}{d x^{2}}=i \hbar \frac{d \Psi(x, t)}{d t}
$$

The second x-derivative is proportional to the first t-derivative. Here's one solution:

Check it. Take the derivatives:

$$
\Psi(x, t)=A e^{i(k x-\omega t)}
$$

This is a traveling wave. The particle has Momentum: $p=\hbar k=h / \lambda$
Energy:

$$
E=\hbar \omega=h f
$$

Not a surprise, I hope.

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial x}=i k A e^{i(k x-\omega t)} \\
& \frac{\partial^{2} \Psi}{\partial x^{2}}=(i k)^{2} A e^{i(k x-\omega t)}=-k^{2} A e^{i(k x-\omega t)} \\
& \frac{\partial \Psi}{\partial t}=(-i \omega) A e^{i(k x-o t)} \\
& \text { So, it works if: } \quad \frac{\hbar^{2} k^{2}}{2 m}=\hbar \omega \\
& \text { That's the same as: } \frac{p^{2}}{2 m}=E
\end{aligned}
$$

Time-dependence of Superpositions

A particle can be in a superposition of states that have different energies.
This superposition is still a solution of the time-dependent SEQ, but not of the time-independent SEQ, because two different E's are involved.

Two questions:

- How does this superposition evolve with time?

For example, is the probability density still stationary?

- What happens if we measure the particle's energy?

First, look at the time dependence. Consider the first two energy states in an infinite well. Here's the superposition:

$$
\begin{gathered}
\Psi(x, t)=\psi_{1}(x) e^{-i \omega_{1} t}+\quad \psi_{2}(x) e^{-i \omega_{2} t} \\
\omega_{1}=\frac{E_{1}}{\hbar}, E_{1}=\frac{h^{2}}{8 m 2^{2}}
\end{gathered}
$$

The two terms have different frequencies, so they oscillate in and out of phase.

Particle Motion in a Well

The probability density is given by: $|\Psi(\mathrm{x}, \mathrm{t})|^{2}$:

$$
|\Psi(x, t)|^{2}=\psi_{1}^{2}+\psi_{2}^{2}+2 \psi_{1} \psi_{2} \cos \left(\left(\omega_{2}-\omega_{1}\right) t\right) \quad \begin{aligned}
& \text { Interference term }
\end{aligned} \quad \begin{aligned}
& \text { We used the identity: } \\
& e^{i \theta}+e^{-i \theta}=2 \cos \theta
\end{aligned}
$$

So, $|\Psi(\mathrm{x}, \mathrm{t})|^{2}$ oscillates between:

In phase: $(\cos =+1)$
$|\Psi(x, t)|^{2}=\left(\psi_{1}+\psi_{2}\right)^{2}$
Particle localized on left side of well:

Out of phase: $(\cos =-1)$
$|\Psi(x, t)|^{2}=\left(\psi_{1}-\psi_{2}\right)^{2}$
Particle localized on right side of well:

The frequency of oscillation is $\omega=\omega_{2}-\omega_{1}=\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right) / \hbar$, or $\mathrm{f}=\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right) / \mathrm{h}$.
This is precisely the frequency of a photon that would make a transition between the two states.

Interference Beats

The motion of the probability density comes from the changing interference between terms in Ψ that have different energy.

The beat frequency between two terms is the frequency difference, $f_{2}-f_{1}$.

So energy differences are important: $\mathrm{E}_{1}-\mathrm{E}_{2}=\mathrm{hf}_{1}-\mathrm{hf} 2$, etc.

Just like in Newtonian physics: absolute energies aren't important (you can pick where to call $\mathrm{U}=0$ for convenience), only energy differences.

Normalizing Superpositions

We want the total probability to equal 1 , even when the particle is in a superposition of states:

$$
P_{t o t}=\int|\psi|^{2} d x=\int\left|a \psi_{1}+b \psi_{2}\right|^{2} d x=1
$$

This looks like a mess. However, we're in luck. Multiply it out:

$$
\begin{aligned}
& \int\left|a \psi_{1}+b \psi_{2}\right|^{2} d x=\int\left|a \psi_{1}\right|^{2} d x+\int\left|b \psi_{2}\right|^{2} d x+\int\left(a \psi_{1}\right)^{*}\left(b \psi_{2}\right) d x+\int\left(b \psi_{2}\right)^{*}\left(a \psi_{1}\right) d x \\
& =|a|^{2} \int\left|\psi_{1}\right|^{2} d x+|b|^{2} \int\left|\psi_{2}\right|^{2} d x+a^{*} b \int\left(\psi_{1}\right)^{*}\left(\psi_{2}\right) d x+b^{*} a \int\left(\psi_{2}\right)^{*}\left(\psi_{1}\right) d x \\
& =|a|^{2}+|b|^{2}+0+0 \\
& \text { If } \psi_{1} \text { is normalized If } \psi_{2} \text { is normalized } \quad \text { It is a mathematical theorem that } \\
& \text { these integrals always }=0 \text { if the } \\
& \text { energies are different. }
\end{aligned}
$$

A normalized superposition must have $|\mathrm{a}|^{2}+|\mathrm{b}|^{2}=1$.
$\psi=0.8 \psi_{1}+0.6 \psi_{2}$ is normalized. $\psi=0.5 \psi_{1}+0.5 \psi_{2}$ is not normalized.

Act 2

Consider a particle in an infinite square well. At $\mathrm{t}=0$ it is in the state:

$$
\Psi(x, t)=0.5 \psi_{2}(x)+\mathrm{A}_{2} \psi_{4}(x)
$$

with $\psi_{2}(x)$ and $\psi_{4}(x)$ both normalized.
$\begin{array}{llll}\text { 1. What is } A_{2} \text { ? } & \text { a. } 0.5 & \text { b. } 0.707 & \text { c. } 0.866\end{array}$
2. At some later time t, what is the probability density at the center of the well?
a. 0
b. 1
c. It depends on the time t.

Solution

Consider a particle in an infinite square well. At $t=0$ it is in the state:

$$
\Psi(x, t)=0.5 \psi_{2}(x)+A_{2} \psi_{4}(x)
$$

with $\psi_{2}(x)$ and $\psi_{4}(x)$ both normalized.

1. What is A_{2} ?
a. 0.5
b. 0.707
c. 0.866

As stated, the question is ambiguous. A_{2} could be complex. However, let's assume that A_{2} is real.
We are told that $\psi_{2}(x)$ and $\psi_{4}(x)$ are both normalized.
$\mathrm{A}_{2}=0.866 \mathrm{e}^{\mathrm{i} \phi}$
also works, for all ϕ.

Therefore: $0.5^{2}+\left|A_{2}\right|^{2}=1 \Rightarrow\left|A_{2}\right|=\operatorname{sqrt}(1-0.25)=0.866$
2. At some later time t, what is the probability density at the center of the well?
a. 0
b. 1
c. It depends on the time t.

Solution

Consider a particle in an infinite square well. At $\mathrm{t}=0$ it is in the state:

$$
\Psi(x, t)=0.5 \psi_{2}(x)+A_{2} \psi_{4}(x)
$$

with $\psi_{2}(x)$ and $\psi_{4}(x)$ both normalized.

1. What is A_{2} ?
a. 0.5
b. 0.707
c. 0.866

As stated, the question is ambiguous. A_{2} could be complex. However, let's assume that A_{2} is real.
We are told that $\psi_{2}(x)$ and $\psi_{4}(x)$ are both normalized.

Therefore: $0.5^{2}+\left|A_{2}\right|^{2}=1 \Rightarrow\left|A_{2}\right|=\operatorname{sqrt}(1-0.25)=0.866$
2. At some later time t, what is the probability density at the center of the well?
\square b. 1
c. It depends on the time t.

In general, the probability distribution of a superposition of energy eigenstates depends on time.
However, ψ_{2} and ψ_{4} each have a node at L/2.
Therefore, every superposition of them also has a node at L/2.

Measurements of Energy

We are now ready to deal with the second question from earlier in the lecture: What happens when we measure the energy of a particle whose wave function is a superposition of more than one energy state?

If the wave function is in an energy eigenstate (E_{1}, say), then we
know with certainty that we will obtain E_{1} (unless the apparatus is broken).
If the wave function is a superposition $\left(\psi=a \psi_{1}+b \psi_{2}\right)$ of energies E_{1} and E_{2},
then we aren't certain what the result will be. However:
We know with certainty that we will only obtain E_{1} or E_{2} !!
To be specific, we will never obtain $\left(E_{1}+E_{2}\right) / 2$, or any other value.
What about a and b?
We can't prove this statement. It is one of the fundamental postulates of quantum theory. Treat it as an empirical fact.
$|a|^{2}$ and $|b|^{2}$ are the probabilities of obtaining E_{1} and E_{2}, respectively.
That's why we normalize the wave function to make $|a|^{2}+|b|^{2}=1$.

Act 3

Consider a particle in an infinite well. It is in the state:

$$
\Psi(x, t)=0.5 \Psi_{2}(x, t)+0.866 \Psi_{4}(x, t)
$$

with $\psi_{2}(\mathrm{x})$ and $\psi_{4}(\mathrm{x})$ both normalized.

We now measure the energy of the particle. What value is obtained?
a. E_{2}
b. E_{4}
c. $0.25 E_{2}+0.75 E_{4}$
d. It depends on when we measure the energy.

Not part of this act, but an important question, nevertheless:
If E_{2} is observed, what is the state of the particle after the measurement?

Solution

Consider a particle in an infinite well. It is in the state:

$$
\Psi(x, t)=0.5 \Psi_{2}(x, t)+0.866 \Psi_{4}(x, t)
$$

with ψ_{2} and ψ_{4} both normalized.

We now measure the energy of the particle. What value is obtained?

$$
\begin{array}{|lll}
\hline \text { a. } E_{2} & \text { b. } E_{4} & \text { c. } 0.25 E_{2}+0.75 E_{4}
\end{array}
$$

d. It depends on when we measure the energy.

We can only get one of the eigenvalues, E_{2} or E_{4}. (not answer c)
The probability of measuring E_{2} is 25%.
The probability of measuring E_{4} is 75%.
Note: Ψ depends on time, but 0.5 and 0.866 don't. So, d is not correct.
The average energy (if we were to measure a large number of similar particles) is the weighted sum of the energies: $0.25 E_{2}+0.75 E_{4}$.

Not part of this act, but an important question, nevertheless:
If E_{2} is observed, what is the state of the particle after the measurement?

The "Collapse" of the Wave Function

If E_{2} is observed, what is the state of the particle after the measurement?
We start out with this wave function:

$$
\Psi(x, t)=0.5 \Psi_{2}(x, t)+0.866 \Psi_{4}(x, t)
$$

Before we make the measurement, we can't predict the result of an energy measurement with certainty.
However, after the measurement, we know with certainty that $E=E_{2}$.
To be specific: We know that a second measurement will yield E_{2}. (Why?)
Therefore, after obtaining E_{2}, the wave function must now be:

$$
\Psi(x, t)=\Psi_{2}(x, t)
$$

That is, the wave function has "collapsed" to the state that corresponds with the result we obtained.

This is one of the weirder features of QM , and is the principal reason that Einstein never accepted QM as a complete theory.
("God does not place dice!")

Supplement:

Time-Energy Uncertainty Principle

Now that we are considering time-dependent problems, it is a good time to introduce another application of the Heisenberg Uncertainty Principle, based on measurements of energy and time. We start from our previous result:

$$
\Delta p \Delta x \geq \hbar \Rightarrow(c \Delta p)\left(\frac{\Delta x}{c}\right) \geq \hbar \Rightarrow \Delta E \Delta t \geq \hbar
$$

Sometimes this is further transformed as follows:

$$
\begin{aligned}
& \Delta E \Delta t \geq \hbar \Rightarrow(\hbar \Delta \omega) \Delta t \geq \hbar \\
& \Delta \omega \Delta t \geq 1 \Rightarrow \Delta f \Delta t \geq 1 / 2 \pi
\end{aligned}
$$

The last line is a standard result from Fourier wave analysis; this should not surprise us - the Uncertainty Principle arises simply because particles behave as waves that are oscillating in time as well as in space.

$\Delta E \Delta t$ Uncertainty Principle Example*

A particular optical fiber transmits light over the range $1300-1600 \mathrm{~nm}$ (corresponding to a frequency range of $2.3 \times 10^{14} \mathrm{~Hz}$ to $1.9 \times 10^{14} \mathrm{~Hz}$). How long (approximately) is the shortest pulse that can propagate down this fiber?

$$
\begin{aligned}
& \Delta \omega \Delta t \geq 1 \quad \Rightarrow \quad 2 \pi \Delta f \Delta t \geq 1 \\
& \Delta t \geq 1 / 2 \pi \Delta f \\
& \quad \geq 1 /\left(2 \pi 0.4 \times 10^{14} \mathrm{~Hz}\right) \\
& \quad=4 \times 10^{-15} \mathrm{~s}=4 \mathrm{fs}
\end{aligned}
$$

Note: This means the upper limit to data transmission is
$\sim 1 /(4 \mathrm{fs})=2.5 \times 10^{14} \mathrm{bits} /$ second $=250 \mathrm{~Tb} / \mathrm{s}$
*This problem obviously does not require "quantum mechanics" per se. However, due to the Correspondence Principle, QM had better give a consistent result.

Next Week

3-Dimensional Potential Well

Schrödinger's Equation for the Hydrogen Atom

Supplement: Quantum Information References

- Quantum computing
- Employs superpositions of quantum states - astoundingly good for certain parallel computation, may use entangled states for error checking
- www.newscientist.com/nsplus/insight/quantum/48.html
- http://www.cs.caltech.edu/~westside/quantum-intro.html
- Quantum cryptography
- Employs single photons or entangled pairs of photons to generate a secret key. Can determine if there has been eavesdropping in information transfer
- cam.qubit.org/articles/crypto/quantum.php
- library.lanl.gov/cgi-bin/getfile?00783355.pdf
- Quantum teleportation
- Employs an entangled state to produce an exact replica of a third quantum state at a different point in space
- www.research.ibm.com/quantuminfo/teleportation
- www.quantum.univie.ac.at/research/photonentangle/teleport/index.html
- Scientific American, April 2000

Supplement: Free particle motion

- It turns out (next slide) that the constructive interference region for a matter wavepacket moves at the "group velocity"

$$
v=h / \lambda m=p / m
$$

- So there's a simple correspondence between the quantum picture and our classical picture of particles moving around with momentum $p=m v$.
- But the quantum packet will spread out in the long run, since it has a range of p , so the correspondence is never perfect.

Position of maximum probability moves and the width of probability distribution spreads out

Supplement: Group velocity

- Say a wave-packet starts out at $x=0$ at $t=0$.
- meaning each harmonic component has the same phase there.
- After time \dagger
- the harmonic component at ω_{1} will have changed phase by $\omega_{1} \dagger$
- the harmonic component at ω_{2} will have changed phase by $\omega_{2} \dagger$
- The phase difference between these components at $x=0$ will now be $\left(\omega_{2}-\omega_{1}\right) \dagger$
To find the point x where they're in phase, we need to find where the phase difference from moving downstream by \times cancels that:
- $\left(\omega_{2}-\omega_{1}\right) t=\left(k_{2}-k_{1}\right) \times$ Or for small differences in $\omega, k: t d \omega=x d k$

Result

$$
\mathrm{v}_{\mathrm{g}}=\mathrm{x} / \mathrm{t}=\mathrm{d} \omega / \mathrm{dk}
$$

In this case $\mathrm{v}_{\mathrm{g}}=\mathrm{p} / \mathrm{m}$

