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Lecture 18:
3D Review, Examples

A real (2D) “quantum dot”

http://pages.unibas.ch/phys-

meso/Pictures/pictures.html
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Lect. 16: Particle in a 3D Box (3)Lect. 16: Particle in a 3D Box (3)

The energy eigenstates and energy values in a 3D cubical box are:

where nx,ny, and nz can each have values 1,2,3,*.

This problem illustrates two important points:

•••• Three quantum numbers (nx,ny,nz) are needed to identify the 
state of this three-dimensional system.  
That is true for every 3D system.

•••• More than one state can have the same energy:  “Degeneracy”.
Degeneracy reflects an underlying symmetry in the problem.
3 equivalent directions, because it’s a cube, not a rectangle.
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Consider a particle in a 2D well, with Lx = Ly = L.

1. Compare the energies of the (2,2), (1,3), and (3,1) states? 

a. E(2,2) > E(1,3) = E(3,1)

b. E(2,2) = E(1,3) = E(3,1)

c. E(2,2) < E(1,3) = E(3,1)

2. If we squeeze the box in the x-direction (i.e., Lx < Ly) 
compare E(1,3) with E(3,1).

a. E(1,3) < E(3,1)

b. E(1,3) = E(3,1)

c. E(1,3) > E(3,1)

Act 1Act 1
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Consider a particle in a 2D well, with Lx = Ly = L.

1. Compare the energies of the (2,2), (1,3), and (3,1) states? 

a. E(2,2) > E(1,3) = E(3,1)

b. E(2,2) = E(1,3) = E(3,1)

c. E(2,2) < E(1,3) = E(3,1)

2. If we squeeze the box in the x-direction (i.e., Lx < Ly) 
compare E(1,3) with E(3,1).

a. E(1,3) < E(3,1)

b. E(1,3) = E(3,1)

c. E(1,3) > E(3,1)

SolutionSolution

E(1,3) = E(3,1) = E0 (12 + 32) = 10 E0

E(2,2) = E0 (22 + 22) =   8 E0
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Consider a particle in a 2D well, with Lx = Ly = L.

1. Compare the energies of the (2,2), (1,3), and (3,1) states? 

a. E(2,2) > E(1,3) = E(3,1)

b. E(2,2) = E(1,3) = E(3,1)

c. E(2,2) < E(1,3) = E(3,1)

2. If we squeeze the box in the x-direction (i.e., Lx < Ly) 
compare E(1,3) with E(3,1).

a. E(1,3) < E(3,1)

b. E(1,3) = E(3,1)

c. E(1,3) > E(3,1)

SolutionSolution

Because Lx < Ly, for a given n, E0 for x motion 

is larger than E0 for y motion.  The effect is 

larger for larger n.  Therefore, E(3,1) > E(1,3).

Example: Lx = ½ , Ly = 1: E(1,3) ∝ 4×12 + 1×32 = 13

E(3,1) ∝ 4×32 + 1×12 = 37 
We say “the degeneracy 

has been lifted.”

E(1,3) = E(3,1) = E0 (12 + 32) = 10 E0

E(2,2) = E0 (22 + 22) =   8 E0
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Consider a non-cubic box:

The box is stretched along the y-direction.  

What will happen to the energy levels?
Define Eo= h2/8mL1
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1: The symmetry is “broken” for y, so 

the 3-fold degeneracy is lowered.  

A 2-fold degeneracy remains, 

because x and z are still symmetric.

2: There is an overall lowering of 

energies due to decreased 

confinement along y.(1,1,1) D=1

(1,2,1) D=1

D=2(2,1,1)  (1,1,2)
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Consider a non-cubic box:

The box is stretched along the y-direction.

What will happen to the energy levels?
Define Eo= h2/8mL1
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Radial Eigenstates of HydrogenRadial Eigenstates of Hydrogen
Here are graphs of the s-state wave functions, Rno(r) , for the 
electron in the Coulomb potential of the proton.  The zeros in 
the subscripts are a reminder that these are states with l = 0 
(zero angular momentum!).
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What is the normalization constant for the 
hydrogen atom ground state?

/

100 10( , , ) ( ) or ar NR r Neψ θ φ −= =
0.5

r0 4a0

R10

Wave Function Normalization
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What is the normalization constant for the 
hydrogen atom ground state?

The probability density is |ψ|2 = N2 exp(-2r/ao).

In 3D, this means “probability per unit volume”.

We require that the total probability = 1:    ∫|ψ|2 dV = 1

dV = r2 sinθ dr dθ dφ

With spherical symmetry, the angular integrals give 4π, so we are left with:
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0.5

0
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ψ(r) = R10 (r)

/( ) or ar Ne−ψ =

4a0

rs

Estimate the probability of finding the electron within 
a small sphere of radius rs = 0.2 ao at the origin.

Probability Calculation
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Estimate the probability of finding the electron within 
a small sphere of radius rs = 0.2 ao at the origin.

If it says “estimate”, don’t  integrate.
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At what radius are you most likely to find the 
electron?

0.5

0

/( ) or ar Ne−ψ =

4a0
rmax

∆r

Maximum Radial Probability



Lecture 18, p 14

At what radius are you most likely to find the 
electron?

Looks like a no-brainer.  r = 0, of course!

Well, that’s not the answer.

You must find the probability P(r)∆r that the electron is in 

a shell of thickness ∆r at radius r. For a given ∆r the 

volume, ∆V, of the shell increases with radius.

The radial probability has an extra factor of r2:

Set dP/dr = 0 to find: rmax = a0 !
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Consider an electron around a nucleus that has two protons, 
like an ionized Helium atom.

1. Compare the “effective Bohr radius” a0,He with the usual 
Bohr radius for hydrogen, a0: 

a. a0,He > a0

b. a0,He = a0

c. a0,He < a0

2. What is the ratio of ground state energies E0,He/E0,H?

a. E0,He/E0,H = 1

b. E0,He/E0,H = 2

c. E0,He/E0,H = 4

Act 2Act 2
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of the H atom.
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Consider an electron around a nucleus that has two protons, 
like an ionized Helium atom.

1. Compare the “effective Bohr radius” a0,He with the usual 
Bohr radius for hydrogen, a0: 

a. a0,He > a0

b. a0,He = a0

c. a0,He < a0

2. What is the ratio of ground state energies E0,He/E0,H?

a. E0,He/E0,H = 1

b. E0,He/E0,H = 2

c. E0,He/E0,H = 4

SolutionSolution

Look at how a0 depends on the charge:
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This should make sense: 

more charge � stronger attraction 

� electron sits closer to the nucleus
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Consider an electron around a nucleus that has two protons, 
(an ionized Helium atom).

1. Compare the “effective Bohr radius” a0,He with the usual 
Bohr radius for hydrogen, a0: 

a. a0,He > a0

b. a0,He = a0

c. a0,He < a0

2. What is the ratio of ground state energies E0,He/E0,H?

a. E0,He/E0,H = 1

b. E0,He/E0,H = 2

c. E0,He/E0,H = 4

Look at how a0 depends on the charge:

Clearly the electron will be more tightly 

bound, so |E0,He| > |E0,H| .  How much 

more tightly?  Look at E0:

In general, for a “hydrogenic” atom 

(only one electron) with Z protons:
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This should make sense: 

more charge � stronger attraction 

� electron “sits” closer to the nucleus
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In 1922, Stern and Gerlach shot a beam of Ag atoms (with l = 0) through                    

a non-uniform magnetic field and detected them at a screen.

We can think of the atoms as tiny magnets (they have a magnetic 

moment) being directed through the field.  They are randomly oriented:

Stern-Gerlach Experiment & Electron Spin

screen

???

Strong B

Weak B
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B

oven
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2. The magnets (i.e., atoms) leave the oven with random orientations.
What pattern do you expect on the screen?

Act 3

1.  Consider a magnet in an 
inhomogeneous field, as shown.  
Which way will the magnet feel a force?

a. Up

b. Down

c. Left

d. Right

e. No force

Stronger B

Weaker B

N

S
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2. The magnets (i.e., atoms) leave the oven with random orientations.
What pattern do you expect on the screen?

Solution

1.  Consider a magnet in an 
inhomogeneous field, as shown.  
Which way will the magnet feel a force?

a. Up

b. Down

c. Left

d. Right

e. No force

Stronger B

Weaker B

N

S

The N pole is in a stronger 

field than the S pole, so its

upward force dominates.

N

S

N

S
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2. The magnets (i.e., atoms) leave the oven with random orientations.
What pattern do you expect on the screen?

Solution

1.  Consider a magnet in an 
inhomogeneous field, as shown.  Which 
way will the magnet feel a force?

a. Up

b. Down

c. Left

d. Right

e. No force

Stronger B

Weaker B

N

S

The N pole is in a stronger 

field than the S pole, so its

upward force dominates.

B

oven

We expect a blob, 

because the position 

depends on the 

random rotation angle. 
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Gerlach's postcard, dated 8 February 1922, to Niels Bohr. It shows a 

photograph of the beam splitting, with the message, in translation: “Attached 

[is] the experimental proof of directional quantization. We congratulate [you] 

on the confirmation of your theory.”

B-field off: 
No splitting

B-field on: 
Two peaks!
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Back to the Stern-Gerlach Experiment

You will analyze this 

experiment in discussion.

The beam split in two!  This marked the discovery of a new type of 

angular momentum, with an ms quantum number that can take on only 

two values:

(s = ½) ms = ±½

screen

B

oven

Note: Most particles have spin (protons, neutrons, quarks, photons*)

The new kind of angular momentum is called the electron “SPIN”.   Why?

If the electron were spinning on its axis, it would have angular momentum and    
a magnetic moment (because it’s charged) regardless of its spatial motion.

However, this “spinning” ball picture is not realistic, because it would require 
the point-like electron to spin so fast that parts would travel faster than c!

So we can’t picture the spin in any simple way * the electron’s spin is simply 
another degree-of-freedom available to electron.
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Electron Spin

We need FOUR quantum numbers to specify the electronic 
state of a hydrogen atom.

n, l, m
l
, ms  (where ms = -½ and +½)

Actually, the nucleus (a proton) also has spin, so we must 
specify its ms as well *

We’ll work some example problems next time.
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Electron Magnetic Moment

Because the electron has a charge and angular momentum, it has a

magnetic moment, with magnitude:   µe = 9.2848×10-24 J/T.

One consequence of the ‘quantization of angular momentum’ is that          

we only ever measure the spin (and hence the magnetic moment) to

be pointing ‘up’ or ‘down’ (where the axis is defined by any applied 

magnetic field). [Note: Because the charge of the electron is negative,  

the spin and magnetic moment point in opposite directions!]

E = -µµµµ....B = -µzBz

Note: These arrows represent 
magnetic moment, not spin...

∆E = 2µe|B|
B=0:

B≠0: +µeB

-µeB
B

In a uniform magnetic field (B = Bzz), a magnetic moment 

has an energy (Phys. 212):

Thus, for an electron, the two spin states have two energies: 



FYI: The FYI: The realreal value of value of µµee

� There are relatively simple arguments that predict 
µe = µB ≡ eћ/2m = 9.2740 x 10-24 J/T

� In reality, the measured mag. moment of the electron is a bit bigger:

µe = -9.2848 x 10-24 J/T

� The effect is small:

|µe/µB| = 1.00115965218685 (42)  

[Yes, it has been measured that well – in fact, it’s one of the most precisely 
known quantities today.]

� What causes the discrepancy?  It comes from the fact that:
� Magnetic (and electric) effects essentially arise from the exchange of    
“virtual” photons.

� Sometimes these can, for a very short time, become an electron-positron pair 
(which then annihilate each other).  There are lots of other exotic processes too. 

� When all these are taken into account, our current best theoretical 
prediction for the value of |µe/µB| = 1.001159652201 (27) 

� This is agreement to at least 12 decimal places!!


