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Lecture 6:
Waves Review and Examples

PLEASE REVIEW 
ON YOUR OWN



SingleSingle--Slit Diffraction (from L4)Slit Diffraction (from L4)
Slit of width a. Where are the minima?

Use Huygens’ principle: treat each point 
across the opening of the slit as a wave 
source.

The first minimum is at an angle such 
that the light from the top and the 
middle of the slit destructively interfere.

This works, because for every point in 
the top half, there is a corresponding 
point in the bottom half that cancels it.
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Single-Slit Diffraction Example

W = 1 cm

L = 2 m

a

θ

Suppose that when we pass red light (λ = 600 nm) through a slit of 

unknown width a, the width of the spot (the distance between the first 

zeros on each side of the bright peak) is W = 1 cm on a screen that is       

L = 2 m behind the slit.  How wide is the slit?

The angle to the first zero is:  θ = ±λ/a

W  =  2L tanθ ≅ 2Lθ = 2Lλ/a

a = 2Lλ/W = (4m)(6×10-7 m) /(10-2 m) = 2.4×10-4 m = 0.24 mm
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Multiple Slit Interference (from L4)

The positions of the principal maxima occur at φ = 0, ±2π, ±4π, ...

where φ is the phase between adjacent slits. θ = 0, ±λ/d, ±2λ/d, ...

The intensity at the peak of a principal maximum goes as N2.

3 slits: Atot = 3A1 ⇒ Itot = 9I1.  N slits: IN = N2I1.

Between two principal maxima there are N-1 zeros and 

N-2 secondary maxima ⇒ The peak width ∝ 1/N.

The total power in a principal maximum is proportional to N2(1/N) = N.
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Act 1 
Light interfering from 10 equally spaced slits initially illuminates a screen. 

Now we double the number of slits, keeping the spacing constant.

1. What happens to the intensity I at the principal maxima?

a. stays same (I) b. doubles (2I) c. quadruples (4I)

2. What happens to the net power on the screen?

a. stays same b. doubles c. quadruples



Lecture 6, p. 6

Solution 
Light interfering from 10 equally spaced slits initially illuminates a screen. 

Now we double the number of slits, keeping the spacing constant.

1. What happens to the intensity I at the principal maxima?

a. stays same (I) b. doubles (2I) c. quadruples (4I)

2. What happens to the net power on the screen?

a. stays same b. doubles c. quadruples

If we double the number of slits, we expect the power on the screen

to double.  How does this work?

� The number of principal maxima (which have most of the power) does not change.

� The principal maxima become 4x brighter.

� But they also become only half as wide.

� Therefore, the net power (integrating over all the peaks) increases two-fold,           

as we would expect.

IN = N2I1.  10 → 20 means 100→ 400.
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Multiple-slit Example 

Three narrow slits with equal spacing d are at

a distance L = 1.4 m away from a screen.  The

slits are illuminated at normal incidence with

light of wavelength λ = 570 nm. The first principal

maximum on the screen is at y = 2.0 mm.

1. What is the slit spacing, d?

2. If the wavelength, λ, is increased, what happens to the width of the 

principal maxima?

3. If the intensity of each slit alone is I1, what is the intensity of the 

secondary maximum?
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Solution
Three narrow slits with equal spacing d are at

a distance L = 1.4 m away from a screen.  The

slits are illuminated at normal incidence with

light of wavelength λ = 570 nm. The first principal

maximum on the screen is at y = 2.0 mm.

1. What is the slit spacing, d?

The first maximum occurs when the path difference between adjacent slits  is 

λ.  This happens at sinθ = λ/d.  We are told that tanθ = y/L = 1.43X10-3, 

so the small angle approximation is OK.  Therefore, d ≈ λ/θ = 0.40 mm.

2. If the wavelength, λ, is increased, what happens to the width of the 

principal maxima?
The relation between θ and φ is φ/2π = δ/λ = d sinθ / λ.  

Therefore, for every feature that is described by φ (peaks, 

minima, etc.) sinθ is proportional to λ.  The width increases.

3. If the intensity of each slit alone is I1, what is the intensity of the 

secondary maximum?
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Phasor diagram: Two phasors cancel, leaving only one � I1
A1=
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ACT 2: Multiple Slits

a) φ=π/2 b) φ=2π/3 c) φ=3π/4

1. What value of φ corresponds to the first 

zero of the 3-slit interference pattern?

φ
0 2π−2π

I

0

9I1

φ = ?

2. What value of φ corresponds to the first zero of the 

4-slit interference pattern?

a) φ=π/2 b) φ=2π/3 c) φ=3π/4
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Solution

a) φ=π/2 b) φ=2π/3 c) φ=3π/4

1. What value of φ corresponds to the first 

zero of the 3-slit interference pattern?

φ
0 2π−2π

I

0

9I1

φ = ?

2. What value of φ corresponds to the first zero of the 

4-slit interference pattern?

a) φ=π/2 b) φ=2π/3 c) φ=3π/4

A φ=π/2

φ

No.
A is not zero.

φ=2π/3

φ

Yes!  
Equilateral triangle 
gives A = 0.

φ=3π/4
φ

No.
Triangle does not close.  

A

Yes. The 
square 
gives A = 0.

φ = π/2

φ

To get a zero, we need a closed figure.Nφ must be a multiple of 2π, so the first zero is at 2π/N.
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Light of wavelength λ is incident on an N-slit system 
with slit width a and slit spacing d.

1. The intensity I as a function of y at a viewing screen 

located a distance L from the slits is shown to the right.  

L >> d, y, a.    What is N?

a) N = 2 b) N = 3 c) N = 4
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2. Now the slit spacing d is halved, but the slit width a is kept constant.
Which of the graphs best represents the new intensity distribution?

Interference & Diffraction Exercise
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Light of wavelength λ is incident on an N-slit system 
with slit width a and slit spacing d.

1. The intensity I as a function of y at a viewing screen 

located a distance L from the slits is shown to the right.  

L >> d, y, a.    What is N?

a) N = 2 b) N = 3 c) N = 4

0

I

Imax

0 +6−6
y (cm)

a)

0 +6−6
y (cm)

0

I

Imax

0 +6−6
y (cm)

0

I

Imaxb)

y (cm)
0 +6−6

0

I

Imax c)

N is determined from the number of minima between two principal maxima.  

N = #minima+1  Therefore, N = 3 .

2. Now the slit spacing d is halved, but the slit width a is kept constant.
Which of the graphs best represents the new intensity distribution?

Interference spacing

should change.

Diffraction profile 

shouldn’t change.

Interference spacing doubles.

Diffraction profile is unchanged.

Solution
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The slit/line spacing determines the location of the peaks (and the 

angular dispersing power θ(λ) of the grating:

The positions of the principal interference maxima 

are the same for any number of slits!

The number of slits/beam size determines the width of the peaks 

(narrower peaks easier to resolve).

δθ ≈ λ/Nd

Resolving power of an N-slit grating:  The Rayleigh criterion

Diffraction from gratings
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Diffraction Gratings (2)
We use Rayleigh’s criterion:

The minimum wavelength separation we can resolve occurs 

when the λ2 peak coincides with the first zero of the λ1 peak:

So, the Raleigh criterion is ∆(sinθ)min = λ/Nd.

However, the location of the peak is sinθ = mλ/d.

Thus, (∆λ)min = (d/m)∆(sinθ)min = λ/mN:

Comments:

• It pays to use a grating that has a large number of lines, N.

However, one must illuminate them all to get this benefit.

• It also pays to work at higher order (larger m):  The widths of 

the peaks don’t depend on m, but they are farther apart at large m.
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ACT 2
1. Suppose we fully illuminate a grating for which d = 2.5 µm.

How big must it be to resolve the Na lines (589 nm, 589.6 nm),

if we are operating at second order (m = 2)?

a. 0.12 mm b. 1.2 mm c. 12 mm 

3. Which will reduce the maximum number of interference orders?

a. Increase λ b. Increase d c. Increase N

2. How many interference orders can be seen with this grating?

a. 2 b. 3 c. 4 



Lecture 6, p. 16

1. Assuming we fully illuminate the grating from the previous 

problem (d = 2.5 µm), how big must it be to resolve the Na lines 

(589 nm, 589.6 nm)?

a. 0.12 mm b. 1.2 mm c. 12 mm 

3. Which will reduce the maximum number of interference orders?

a. Increase λ b. Increase d c. Increase N

2. How many interference orders can be seen with this grating?

a. 2 b. 3 c. 4 

m ≤ d/λ, so increase λ, or decrease d.  

Changing N does not affect the number of orders.

Solution



Lecture 6, p. 17

α=2αc
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Dα
α

Two point 

sources Just as before, 

Rayleigh’s Criterion

define the images to be 

resolved if the central 

maximum of one image 

falls on the first minimum 

of the second image.    

D
c

λ
α 22.1=

NOTE:

No interference!!

Why not?

Angular Resolution (from L5)

Diffraction also limits our ability to “resolve” (i.e., distinguish) two point sources.  

Consider two point sources (e.g., stars) with angular separation α viewed 

through a circular aperture or lens of diameter D.  



Lecture 6, p. 18

Exercise: Angular resolution

Car headlights in the distance:

What is the maximum distance L you can 

be from an oncoming car  at night, and still 

distinguish its two headlights, which are 

separated by a distance d = 1.5 m? 

Assume that your pupils have a diameter 

D = 2 mm at night, and that the wavelength 

of light is λ = 550 nm.

Use Rayleigh’s criterion:                                      (radians)

Then, L ≈ d/αc = 4500 m = 2.8 miles (assuming perfect eyes).

The small angle approximation is valid.

41.22 3.4 10
c

D

λ
α −= = ×
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Digital cameras look 

something like this:

If the distance between adjacent pixels is less than the minimum resolvable 

separation due to diffraction, then diffraction limits the image quality.

The “f-number” of a lens is defined as f/D.  To minimize diffraction, 

you want a small f-number, i.e., a large aperture*. 

d

Photosensor:

7 mm

5 mm

Pixel

*This assumes a ‘perfect lens’. In practice, lens aberrations limit the resolution if D is too big.

Photosensor lens

Focal length

f = 10 mm

Aperture, 

D = 3 mm

Example: Camera resolution
(Next week’s discussion)


