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“Anyone who can contemplate 
quantum mechanics without getting 
dizzy hasn’t understood it.”

--Niels Bohr
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Special (Optional) Lecture
“Quantum Information”
� One of the most modern applications of QM

� quantum computing
� quantum communication – cryptography, teleportation
� quantum metrology

� Prof. Kwiat will give a special 214-level lecture on this topic
� Sunday, Feb. 24
� 3 pm, 141 Loomis

� Attendance is optional, but encouraged.

Physics Colloquium TODAY!
“Quantum Optomechanics” – Prof. Markus Aspelmeyer, U. Vienna

Massive mechanical objects are now becoming available as new systems for quantum 
science. Recent experiments, including laser-cooling of micro- and nanomechanical
resonators into their quantum ground state of motion, provide the primary building 
blocks for full quantum optical control of mechanics, i.e., quantum optomechanics. 
This new frontier opens fascinating perspectives both for various applications and for 
unique tests of the foundations of quantum theory, for example table-top experiments 
exploring the interface between quantum physics and gravity.

� 4 pm, 141 Loomis
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Final Exam: Monday, Mar. 4

Homework 6: Due Saturday (March 2), 8 am

Up to now:
• General properties and equations of quantum mechanics 

• Time-independent Schrodinger’s Equation (SEQ) and eigenstates.

• Time-dependent SEQ, superposition of eigenstates, time dependence.

• Collapse of the wave function

• Tunneling

This week:

• 3 dimensions, angular momentum, electron spin, H atom

• Exclusion principle, periodic table of atoms

Next week:

• Molecules and solids, consequences of Q. M., Schrodinger’s cat

• Metals, insulators, semiconductors, superconductors, lasers, . .

Overview of the Course
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Lecture 17:
Atomic States, Angular Momentum  

& Selection Rules
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Today

Schrödinger’s Equation for the Hydrogen Atom

• Radial wave functions

• Angular wave functions

Angular Momentum

• Quantization of Lz and L2

Atomic Transitions

• Selection rules
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Summary of S-states of H-atom

The “s-states” (l=0, m=0) of the Coulomb potential have 
no angular dependence.  In general:

because Y00(θ,φ) is a constant.

Some s-state wave functions (radial part):
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S-state wave functions are 

spherically symmetric.

|ψ20(r,θ,φ)|2 :

http://www.falstad.com/qmatom/
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The Ylm(θ,φ) are known as “spherical harmonics”.

They are related to the angular momentum of the electron.

Total Wave Function of the H-atom

We will now consider non-zero values of the other two 
quantum numbers:  l and m.

• n “principal” (n  ≥ 1)

• l “orbital” (0  ≤ l < n-1)

• m “magnetic” (-l  ≤ m ≤ +l)

( ) ( ) ( ), , ,nlm nl lmr R r Yψ θ φ θ φ=

x

y

z r

θ

φ

* The constraints on l and m come from the boundary conditions one must impose on

the solutions to the Schrodinger equation. We’ll discuss them briefly.

*
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Quantized Angular Momentum

Linear momentum depends on the wavelength (k=2π/λ):

Angular momentum depends on the tangential component of the 

momentum.  Therefore Lz depends on the wavelength as one moves 

around a circle in the x-y plane.  Therefore, a state with Lz has a similar 

form:

An important boundary condition:

An integer number of wavelengths must fit around the circle.

Otherwise, the wave function is not single-valued.

This implies that m = 0, ±1, ±2, ±3, M

and Lz = 0, ±ħ, ±2ħ, ±3ħ, M

Angular momentum is quantized!!

Reminder:

eimφ = cos(mφ) + i sin(mφ)

 where ( ) ikxp k x eψ= ∝ℏ

 where ( ) ( , ) im

Z lmL m r Y e φψ θ φ= ∝ ∝
�

ℏ

http://www.falstad.com/qmatom/

We’re ignoring 

R(r) for now.

Re(ψ)

φ

Lz
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Summary of quantum numbers for the H-atom orbitals:

The l Quantum Number

In the angular wave function ψlm(θ,φ)
the quantum number l tells us the total angular momentum L.

L2 = Lx
2 + Ly

2 + Lz
2 is also quantized. The possible values of L2 are:

The quantum number m reflects the component of angular momentum 

about a given axis.

2 2( 1)  where 0,1, 2, ...L = + =ℏl l l

Principal quantum number: n = 1, 2, 3, M.

Orbital quantum number: l = 0, 1, 2, M, n-1

Orbital ‘magnetic’ quantum number: m = -l, -(l-1), M 0, M (l-1),  l

Wave functions can be eigenstates of both L2 and LZ. 

For spherically symmetric potentials, like H-atom, they can also be 

eigenstates of E.  Such states are called “orbitals”.

 where m 0, 1, 2, ...zL m= = ± ±ℏ
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( )2 2( 1)  not L = + ℏ ℏ
2

l l l

Angular Momentum & Uncertainty Principle  

Note that                                     .

Also, we describe angular momentum using only two numbers, l and m.

Q: Why can’t we specify all three components (e.g., L =(0,0,l) so that L2= l2?

A: The uncertainty principle doesn’t allow us to know that both Lx = 0

and Ly = 0 unless Lz = 0 also.

Proof by contradiction: Assume L =(0,0,l).

, so if L points along the z-axis, both r and p lie in the x-y plane.

This means that ∆z = 0 and ∆pz = 0, violating the uncertainty principle.

Thus, L must have a nonzero Lx or Ly, making L2 somewhat larger.

We can’t specify all three components of the angular momentum vector.

This logic only works for L ≠ 0.   L = (0,0,0) is allowed.  It’s the s-state.

All physical quantities are subject to uncertainty relations,

not just position and momentum.

L r p= ×
� � �
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Classical Picture of L-Quantization

e.g., l = 2 ℏℏℏ 6)12(2)1l(lL 22 =+=+=
L = √6 ℏLz

+2ℏ

+ℏ

0

-ℏ

-2ℏ

L r p= ×
� � �
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The Angular Wave Function, Ylm(θ,ϕ)

The angular wave function may be written: Ylm(θ,φ) = P(θ)eimφ

where P(θ) are polynomial functions of cos(θ) and sin(θ).  

To get some feeling for these angular distributions, we make 

polar plots of the θ-dependent part of |Ylm(θ, φ)| (i.e., P(θ)):
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2

Parametric Curve 

The Angular Wave Function, Ylm(θ,ϕ)
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Probability Density of Electrons

Let’s look at the angular momentum states of the hydrogen atom.

Probability density = Probability per unit volume = |ψnlm|2 ∝ Rnl
2 Ylm

2
.

The density of dots plotted below is proportional to |ψnlm|2. 

1s state 2s state 2p states

n,l,m =   1,0,0 2,0,0 2,1,{0,±1}
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1. Suppose the electron is in the l=1, m=1 state.  In what direction(s) 
(at what θ), is the electron most likely to be found?

a. θ = 0° (north pole)

b. θ = 45°

c. θ = 90° (equator)

Act 1

1, 1 sinY θ± ∝
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1. Suppose the electron is in the l=1, m=1 state.  In what direction(s) 
(at what θ), is the electron most likely to be found?

a. θ = 0° (north pole)

b. θ = 45°

c. θ = 90° (equator)

Solution

sinθ is maximum at θ = 90°.

1, 1 sinY θ± ∝
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Cylindrical Symmetry

Why do none of the graphs display φ-dependence?
(They all have cylindrical symmetry.) 

For a given m, the φ dependence of ψ is eimφ.  When we square 

it to find the probability, eimφe-imφ = 1.  

In order to see  φ dependence, we need a superposition of 

different m’s.  

y

z

x

Similar arguments explain how  

to create the usual “d” lobes, 

from l =2, m = ±2 superpositions:

z

-

+ -

+
y

x

For example, consider the superposition:

(l = 1, m = +1)   &    (l = 1, m = -1).

This will have an azimuthal wave function:

eiφ + e-iφ ≈ cos φ, i.e., lobes along the x-axis:

See Supplement 

for more info.

z

x

y
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They govern the bonding and chemistry of atoms.

In particular, they determine the angles at which different atoms bond:   

→ the structure of molecules & solids.

Why are these distributions important?

Historical Labeling of Orbitals

Notation from 19th century 

Angular momentum quantum # spectroscopy

l = 0 s “sharp”

l = 1 p “principle”

l = 2 d “diffuse”

l = 3 f “fundamental”
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Act 2

How does the angular part of the wave function depend on the 
principal quantum number, n?

a. The number of “lobes” increases as n increases.

b. As n increases, the wave function becomes 
more concentrated in the xy plane.

c. No dependence.
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Solution

How does the angular part of the wave function depend on the 
principal quantum number, n?

a. The number of “lobes” increases as n increases.

b. As n increases, the wave function becomes 
more concentrated in the xy plane.

c. No dependence.

The principal quantum number describes the radial motion,

not the angular motion.  Rnl(r) depends on n, but Ylm(θ,φ) does not.
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Effect of Effect of l on Radial Wave Functions on Radial Wave Functions RRn,n,ll

1: l < n (Total energy must always be 

larger than rotational part.)

2: a. For fixed l, the number of 

radial nodes increases with n.

b. For fixed n, the number of 

radial nodes decreases with l.

(E = Trad + Trot + U(r) , i.e.,     

‘radial KE’ decreases as 

‘rotational KE’ increases ).

3: # radial nodes = (n-1) - l .

4: ψ(r=0) = 0 for l ≠ 0

Do you understand why?

(i.e., a physics explanation)

The energy eigenvalues do not depend 

at all on l. En = -13.6 eV/n2

This is only true for the 

Coulomb potential.

l = 2

l = 1

l = 0

l = 1

l = 0

n=2 n=3

l = 0

n=1
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Hydrogen Atom States: Summary

Key Points:

n: principal quantum #

l: orbital quantum #

ml:orbital magnetic quantum #

Energy depends only on n

For a given n, there are n 

possible angular momentum states:

l = 0, 1, ..., n-1

For a given  l, there are 2l + 1

possible z-components: ml = -l, -(l -1), M 0 M (l -1), l

Therefore, a level with quantum number n has n2 degenerate states.

2

2 2

0

1 13.6 eV

2
n

e
E

a n n

κ−
= = −

n=1

n=3

n=2

E

-15
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-5

0
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Hydrogen Atom States: Summary

(1,0,0)

(2,0,0)

(2,1,-1), (2,1,0), (2,1,1)

(3,0,0) 

(3,1,-1), (3,1,0), (3,1,1)

(3,2,-2), (3,2,-1), (3,2,0), (3,2,1), (3,2,2)

(n,l,ml)

n=1

n=3

n=2

E

-15

-10

-5

0
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Consider the three lowest energy levels of the hydrogen atom. 

What wavelengths of light will be emitted when the electron jumps 

from one state to another?

Transitions in the Hydrogen Atom
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Consider the three lowest energy levels of the hydrogen atom.  

What wavelengths of light will be emitted when the electron jumps 

from one state to another?

Solution:

∆E21 = 10.2 eV E = -13.6 eV/n2, so E1 = -13.6 eV, E2 = -3.4 eV, 

∆E31 = 12.1 eV and E3 = -1.5 eV.  There are three jumps to

∆E32 = 1.9 eV consider, 2-to-1, 3-to-1, and 3-to-2.  The photon

carries away the energy that the electron loses.

λ = h/p = hc/E hc = 1240 eV�nm

λ21 = 122 nm Two wavelengths are in the ultraviolet.

λ31 = 102 nm

λ32 = 653 nm The 3-to-2 transition gives a visible (red) photon.

Transitions in the Hydrogen Atom
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Optical Transitions between Atomic Levels

Consider the n = 1 and 2 levels of hydrogen:

The atom can make transitions by emitting (n: 2→1) or absorbing (n: 1→2) a photon. 

In general, the time-dependent solution of the SEQ in the time-dependent EM field 

shows the wave function oscillating between the two eigenstates of the energy (that 

is, they were eigenstates before the field showed up!). 

Not all transitions are possible.

For example, one must conserve angular momentum (and the photon has l = 1).

1240 eV nm

E c
f

h

hc

E E

λ

λ

∆
= =

⋅
= =

∆ ∆

n = 2

n = 1
∆E

photon

Each photon carries 1 ћ of angular momentum.

1s        2s        2p

Stationary States:

Superpositions:

1s ± 2s

1s ± 2p
Oscillating 

electric-dipole 

couples to 

photons

No electric-

dipole moment
Forbidden 

transition

∆∆∆∆l = 0

Allowed 

transition

∆∆∆∆l = ±1

www.falstad.com/qmatomrad
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Allowed Transitions for H

Selection Rule for “electric-

dipole” (photon has l = 1) 

transitions:

NOTE:

It is possible (but unlikely) for 
the photon to have ℓ ≠ 1 or for 

more than one photon to be 

involved.  This permits other 

∆l and ∆m. 

(You will observe some of these transitions in Lab 4.)

∆l  = ±1
∆m = 0, ±1

Energy (eV)

0.00

-0.85

-1.51

-3.40

-13.6 eV

n 

4

3

2

1

ℓ = 0 1               2             3             4

s p               d             f              g

2

13.6 eV

n
nE

−
=Forbidden 

transition

∆l = 0
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Next Week

Multi-electron Atoms

Covalent bonds

Electron energy bands in Solids

QM in everyday life

Next Time

Electron ‘spin’ and the Stern-Gerlach experiment
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Supplement: 
Superposition and Chemical Bonding
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Chemical bonds are stronger when the bonding electrons in each atom lie on the 

side near the other atom.  This happens as a result of superposition.  A state with 

definite (l,m) is symmetrical, but a superposition does not have to be.  The example 

here is called an “sp hybrid”:

Y00 + Y10
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From chemistry you may be familiar with states like dxy, etc.

How do these relate to our Ylm?

• “d” means l=2.

• “xy” stands for a particular superposition of different m’s.

dxy = (Y22+Y2 -2)/ √2.  

The probability distribution is shown here:

Which set of states is ‘right’?

It depends on the problem you want to solve. 

• In a strong magnetic field the “m” states are (approximately) the energy

eigenstates, because the magnetic moment determines the energy.

• In a crystalline environment, states like “xy” may be better, because the 

interaction with nearby atoms dominates the energy.

Supplement: Chemistry Notation

x

yz


