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Introduction
This booklet is a guide to the material in the PHYS 214 class at the University of Illinois.
The intention of these notes is to provide succinct explanations of each of the concepts
covered in the course, which will be expanded upon in the lecture of the class. It is ideal
if the student reads each unit before the lecture, and again afterwards. They are divided
into units, which are meant to be covered at a rate of two per week in a 7-week course.

Each unit has a section titled “After this unit, you should be able to.” These are the
learning goals for the chapter, and taken all together, these are the learning goals for
the course. In the course, the homework, discussion, and exam questions will focus on
helping you get to the point at which you have the listed skills. At the end of the course,
you should have an understanding of the basics of quantum mechanics, and have some
idea for what makes it so different from our comfortable classical picture of the world.

There are numerous footnotes throughout the chapters. These are meant to explain
details and assumptions as they are made through the notes without interrupting the
exposition. These footnotes are optional.

Finally, these notes include illustrations by the author. These are not expected to be
beautiful, but they are meant to be illustrative.
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1 Waves
One of the main features of quantum mechanics is that particles can behave like waves,
so we first start with a description classical waves, like sound. These waves are typically
generated by a source, such as a speaker for sound waves, or a laser. The fundamental
object is a function of space and time, which we will call y(x, t) in this section. y may
represent the magnitude of the electric field for light, or the pressure in a sound wave, or
the height of the water in a water wave.

1.1 Harmonic waves

To further simplify matters, we will consider harmonic waves of a single frequency. Such
a wave propagating in the +x direction may be written as

y(x, t) = Acos(kx −ωt +φ), (1.1)

where ω is the angular frequency and k is the wavenumber. For this class we will be
considering waves either just in 1D or along a path in 3 dimensions, so you will not have
to consider vector quantities. A summary is available in Table 1.1.

For concreteness, let’s consider the classical (PHYS 212) description1 of light waves
polarized in the x direction. In this case, the wave equation describes the value of the
electric field at a given position and time.

Ex(x, t) = Emax cos(kx −ωt +φ) (1.2)

Let’s break this equation down. Since cos always returns a value between ±1, the maxi-
mum electric field at any position or time is Emax. The electric field varies between ±Emax.
We will call this the amplitude of the wave.

Now let’s consider the part inside the cos: kx−ωt+φ. Recall that if we have a function
f (x), then f (x+ a) shifts the entire function to the left by a. φ serves this role for Eqn 1.2.
The easiest way to read off φ is to look at the value of the electric field at t = 0 and x = 0.
Then

φ = cos−1 (Ex(0,0)/Emax) . (1.3)

Now let’s consider t = 0. The function is then Emax cos(kx +φ). k measures the rate at
which the wave repeats in space; the wavelength λ is equal to 2π/k, since the value of
the wave is the same for x+nλ.

Now take x = 0; the function is then Emax cos(ωt +φ). ω is like k but for time; it’s the
rate at which the function oscillates in time. We call ω the angular frequency, because the
function has the same value for t+2π/ω. We also sometimes use the frequency f =ω/2π,
and the period T = 1/f . The period is the equivalent of the wavelength λ for time; it’s
how often the function repeats itself.

1This description must be modified because light is actually quantized, which we will get to later in the
course.
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1.2. AMPLITUDE AND INTENSITY 7

Symbol Description SI units
k Wave number m−1
λ Wavelength m
ω Angular frequency s−1

φ Phase radians (unitless)
T Period s
f Frequency s−1

I Intensity W/m2

A Amplitude
√

W/m2

Table 1.1: Parameters that describe harmonic waves.

We define the speed of a harmonic wave by tracking how quickly a maximum value
moves through space. Eqn 1.2 is at a maximum where kxmax−ωt+φ = 2πn, where n is an
integer. Let’s consider n = 0 to track one maximum in particular:

xmax =
ωt −φ
k

(1.4)

v =
dxmax
dt

=
ω
k

(1.5)

So the speed of such a wave is given by v =ω/k, which may also be written as λf .

1.2 Amplitude and Intensity

For many waves of interest, we don’t directly detect the wave amplitude y at a given po-
sition and time (e.g., the instantaneous pressure of a sound wave, or the electric field
strength of an electromagnetic wave). Instead, a quantity of interest is the average inten-
sity, which describes how loud the sound is or how bright the light is. For light, it tells
us the power per square meter incident on a surface. The intensity of the wave at a given
time and position is I(x, t) = |y(x, t)|2.2 We will average the intensity over a period T :

Iaverage(x) =
1
T

∫ T

0
|A|2|cos(kx −ωt +φ)|2dt =

|A|2

2
, (1.6)

for a harmonic wave. For a pure harmonic wave, the average intensity is the same at all
places in space.

In the next unit, we will consider what happens when we superimpose two harmonic
waves. Using light waves as an example, depending on the location and time, the elec-
tric field may add or subtract, which will make the time-averaged intensity depend on
position. This adding and subtracting of the field value is called interference.

2For some variable x, |x|2 is the absolute value squared. The absolute value is there because sometimes
y is complex, which we will see later in the course.



2 Interference
2.1 After this unit, you should be able to

• Compute the phase difference at an observer’s position between the waves emanated
from two sources, then compute the intensity that the observer experiences.

• Apply interference rules to two-slit, interferometer, and other interference prob-
lems where the path length and source phases differ.

2.2 Superposition of waves

In the previous section, we considered a single harmonic wave generated by a source.
Now suppose that there are two sources(1 and 2) generating two waves. For this class, for
simplicity, we will only consider waves with the same wavelength, amplitude, and speed,
so they have the same A, ω, and k:

y1(x, t) = Acos(kx −ωt +φ1) (2.1)
y2(x, t) = Acos(kx −ωt +φ2). (2.2)

In many cases (you can always assume this in this course), 1 the total wave is given by
superposition, so

ytotal(x, t) = y1(x, t) + y2(x, t). (2.3)

At some times and positions, y1 and y2 might be either the same sign or different signs.
So at some locations the summed amplitude will be larger than either of the waves by
themselves, and at other locations it will be smaller. We refer to this as interference. If
they are the same sign, they will interfere constructively and if they are opposite signs,
they will interfere destructively. A picture of this is shown in Figure 2.1.

Using the trigonometric identity

cosα + cosβ = 2cos
(α − β

2

)
cos

(α + β
2

)
(2.4)

we can find that

ytotal(x, t) = 2Acos
(
φ1 −φ2

2

)
cos

(
kx −ωt +

φ1 +φ2

2

)
(2.5)

So the result is a new cos wave with a new amplitude related to the difference in phase,
2Acos

(
φ1−φ2

2

)
. That means that the average intensity is given by 2A2 cos2

(
φ1−φ2

2

)
, so the

difference in phase between the waves is the key to knowing the total intensity. There are
a few ways of getting differences in the phase.

1Waves that do this are called “linear” because they add.
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2.3. PHASORS 9
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Figure 2.1: Destructive interference between two waves

2.3 Phasors

What if the amplitudes of the waves are different? In that case, we cannot use the trigono-
metric identity in Eqn 2.4. Luckily, there is a graphical way of adding harmonic waves,
called phasors.

An observer at a given position will see an amplitude from a given source that varies
like A1 cos(φ1 −ωt). Phasors map this onto a two dimensional vector (Figure 2.2) with
amplitude A1 and an angle from the x-axis given by φ1 −ωt. Then the amplitude at any
given time is given just by the x coordinate of the vector, by trigonometry. It turns out
that you can add phasors as if they are vectors, and the x coordinate of the summed vector
will give the amplitude of the wave at a given time. The length of the phasor squared,
divided by two, will give the average intensity of the summed wave.

2.4 Example: Two speakers

Now let’s consider the intensity of waves emitted by two sources, as measured by an
observer. We will consider an observer that is r1 away from source 1 and r2 away from
source 2 (Figure 2.3) For simplicity, let’s suppose that the sources have exactly the same
amplitude. For example, this could be a person listening to music from two speakers.
Our objective will be to compute how loud the observer percieves the sound to be. The
waves that the observer experiences2 from each source are:

y1(x, t) = Acos(kr1 −ωt +φ1) (2.6)
y2(x, t) = Acos(kr2 −ωt +φ2). (2.7)

2This is the amplitude at the observer’s position.
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Figure 2.2: A figure that shows the relationship between phasors and harmonic waves.

Figure 2.3: An observer experiencing the intensity of waves generated from two sources
in phase.



2.5. EXAMPLE: TWO SLITS 11

Then, using the trigonometric identity from Eqn 2.4,

y1(x, t) + y2(x, t) = 2Acos
(
kr1 +φ1 − kr2 −φ2

2

)
cos

(
kr1 +φ1 + kr2 +φ2

2
−ωt

)
. (2.8)

and the total average intensity for that observer is

Itotal = 2A2 cos2
(
kr1 +φ1 − kr2 −φ2

2

)
. (2.9)

So the measured intensity depends on the relative phases of the speakers (φ1,φ2) as they
are emitting the sound and the position of the observer relative to the two speakers.

Let’s suppose that φ1 = φ2 (when this is true, we say that the sources are in phase), so
that

Itotal = 2A2 cos2
(
k
r1 − r2

2

)
= 4I1 cos2

(
k
r1 − r2

2

)
. (2.10)

The intensity is maximal (2A2) when r1 − r2 = mλ, where m is an integer, and it is zero
when r1 − r2 =

(
m+ 1

2

)
λ for some (possibly other) integer m.

Because amplitudes add, and intensity is amplitude squared, the maximal intensity is
actually four times as large as the intensity of a single source. Energy is still conserved
here, because there are places with zero intensity. Interference is just redistributing the
total energy compared to the two sources operating independently.

2.5 Example: Two slits

An important example of interference is the two-slit experiment, shown in Fig 2.4. In
this experiment, we aim a laser at an opaque barrier with two slits made in it. There is
a screen placed a distance L away from the barrier. We measure the intensity of light on
the screen as a function of the position on the screen.

We use the physics of interference to analyze this situation.

• We treat the slits as if they are sources of waves.

• Since both slits are equidistant from the laser, the waves at each slit are in phase;
that is, φ1 = φ2 when considered at the slit.

• The variation of intensity measured on the screen will be due to the fact that differ-
ent points on the screen are different distances from the slits.

• If the slits are the same size, then the amplitude measured at the screen will be the
same from each slit (A1 = A2).

• The wavelength coming from both slits is the same, since the same laser is incident
(k1 = k2 and ω1 =ω2)
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Figure 2.4: Geometric setup of a two-slit experiment. The card in the pictures has slits
separated by a distance d (usually a few µm). The screen is placed L (a meter or two)
away from the card. Then the intensity varies on the screen as we can see from a pattern
of bright and dark spots. The position on the screen is y.



2.6. EXAMPLE: INTERFEROMETER 13

Figure 2.5: Interferometer optical setup

Because of these observations, we can use Eqn 2.10 to compute the intensity at a point in
the screen. All that has to be done is to compute the difference in distance to the slits,
δ = r1 − r2.

The calculation of δ can be done by assuming that L is much larger than the separation
between the slits, d. In that case, δ = d sinθ. So the angles at which the intensity is
maximal will be when d sinθ = mλ, with m an integer. There will be minima between
each of the maxima!

2.6 Example: Interferometer

The interferometer uses interference to measure distances very accurately, as you might
be able to tell from the name (interfero - meter). In this setup, a laser is sent down a path
where it encounters a half-silvered mirror set at a 45 degree angle. This mirror reflects
half of the light and allows half of the light to pass through. The intensity is reduced
by a factor of two for each path, but then recombines. The light then travels down two
separate paths, of length L1 and L2, and rejoin at the mirror. We place a detector as noted
in the figure.

Since the mirrors typically absorb some of the light, we typically don’t work the in-
tensity of the laser, but instead use the intensity of the light with one path blocked: I1.
Since the two paths are in phase, we can use Eqn 2.10, so

I = 4I1 cos2
(
k
r1 − r2

2

)
. (2.11)
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r1 is the distance traveled on one path, and r2 is the distance traveled on the second path.
It actually doesn’t matter the total values of r1 and r2; we can compute r1 − r2 knowing
just the difference between the arm lengths:

r1 − r2 = 2(L1 −L2) (2.12)

The factor of two occurs because the light travels the arms twice, once to the terminal
mirror, and again on the way back.



3 Diffraction
Consider light passing through a single slit, incident on a screen a distance L away. Pre-
viously, we assumed that the slits acted as if they were infinitesimally thin and acted as
point sources. For slits of a finite width, each location along the slit acts as if it were a
point source; this principle is known as Hyugen’s principle. This will create a spot on
the screen due to the interference between all the points on the slit. Thinner slits lead to
larger spots and thicker slits lead to smaller spots.

3.1 After this unit, you should be able to

• Compute the size of spots that a single slit or a single circular aperture makes on a
screen.

• Be able to construct phasor diagrams that lead to destructive interference and com-
pute the angle between the phasors.

• For a diffraction-limited optical setup, suggest changes that will decrease/increase
the size of the spots.

3.2 Phasors for more than two sources

Recall that the phasor diagram for two sources in constructive interference looks like
. The angle between the phasors is 2πm, with m an integer. This is achieved

when k(r2 − r1) = 2πm, assuming the sources were in phase. For the two-slit experiment,
r1 − r2 = d sinθ, which combined with before gives us the relationship d sinθ =mλ.

Phasors become particularly useful when there are more than two sources. Suppose
that there are now three slits equally spaced d apart. Then r1 − r2 = d sinθ and r2 − r3 =
d sinθ. Then we can get constructive interference between all three if we have a phasor
diagram like the following: . In analogy to the two-slit problem, this
happens when k(r2 − r1) = 2πm and k(r3 − r2) = 2πm, for the same m. This can happen if
d sinθ = mλ, the same condition for maxima of the two slit situation. You can likely see
that the same condition will hold no matter how many evenly spaced slits we have.

It turns out (we will not prove this in this course) that the maxima get sharper the
more slits are participating. This fact is used to produce diffraction gratings, which have
many slits and are used to perform spectroscopy. Spectroscopy1 allows us to measure
precisely what wavelengths are present in a given light source.

15
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Figure 3.1: The partitioning of a single slit into 6 point sources.

Figure 3.2: Phasor diagrams that lead to destructive interference for different numbers of
point sources.



3.3. DIFFRACTION FROM A SINGLE SLIT 17

3.3 Diffraction from a single slit

Our goal in this section will be to compute the intensity of light at a given position y on
the screen. For our purposes, we will really just be satisfied in finding where the intensity
goes to zero the first time, so we know how big the spot is. It’s easier to consider the angle
θ0 at which the intensity is zero. To do this, let’s pretend that the single slit (width a) is
actually made up of N point sources, separated by a distance d = a/N . We will take the
limit as N →∞.

There is complete destructive interference when the phasor diagrams complete a full
loop, since the sum of all the phasors is zero (the sum ends up back where we started, so
the total is zero). This is shown in Fig 3.2 for a few different values of N .

We will follow the same strategy as before; first we need to know what angle φ0(N )
leads to a closed phasor diagram. This is 2π/N ; that wayN angles add up to one complete
rotation, 2π radians. There is destructive interference when

k(r2 − r1) =
2π
N

(3.1)

Plugging in 2π/λ for k and a/N sinθ for (r2 − r1), we get

asinθ0 = λ (3.2)

Note that this result does not depend on N at all! So the limit as N →∞ does not change
the result. Remember that this is the angle of the first zero in the spot.

The position of the zero on the screen is given by y0 = L tanθ0. The size of the spot is
2y0, since it extends in the positive and negative direction.

3.4 Diffraction for a circular aperture

For a slit geometry, the zero of the spot satisfies the equation asinθ0 = λ. For a circular
geometry, the derivation is very similar to the single slit case. We will not derive this
quantity in this class; it’s a little complicated and does not offer much insight. The result
is that for a circle of diameter D, the first zero in the pattern is D sinθ0 = 1.22λ.2

3.5 Diffraction-limited optics

The presence of diffraction puts fundamental physical limits on how tightly we can focus
light. Consider a point source of light, which is far away. The light from the point source
is incident on a lens, which focuses the light onto a screen. This is how telescopes and
cameras capture their images. The main point here is that even if a lens is used, diffraction
will occur, so a point source will create on the screen a spot as large as we derived above.

1In Latin, spectrum means "image" and the -scopy relates to the study of a subject.
2If you want to know more, this is called the Airy disk
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3.6 Example: diffraction and lithography

Lithography3 is the technique used to draw tiny nanometer resolution circuits on semi-
conductors to create computers, phones, and other electronics. A laser is sent through a
lens to focus it onto a given spot, which removes material from the silicon. The important
question is how large the spot will be; this determines how narrow the lines are and how
closely they can be drawn to one another.

Suppose the lens has diameter D and is a distance L from the silicon. The wavelength
of the laser is λ. Then the first zero is at θ0 = sin−1 (1.22λ/D). The thickness of the line
is 2L tanθ0. Plot these functions; you can see that if λ is increased, then the thickness of
the line increases, while if D increases, then the thickness decreases. Similarly, L should
be as small as possible to make the line as thin as possible.

3The litho prefix means ‘stone,’ and the -graph suffix means to write or draw, so lithography literally
means ‘to draw on stone.’



4 Photons
Here’s the conclusion: it turns out that light comes in discrete packets (quanta) of energy.
We call one of these discrete packets a photon. For a given frequency of light, the quan-
tum of energy is given by E = hf , or ~ω, where h is a fundamental physical constant equal
to 6.626 × 10−34 m2 kg/s and ~ = h/2π. The momentum of a photon is p = h/λ = ~k. In
this unit, we will explore how we know this to be true.

4.1 After this unit, you should be able to

• Explain why only certain wavelengths of light cause electrons to be ejected from
materials

• Compute the kinetic energy of electrons ejected from a material

• Use the energy of a photon to compute the number of photons that arrive per second
for a given intensity of light.

• Use the momentum of a photon to solve simple kinematics problems involving pho-
tons.

• Solve problems that use the relationships between wavelength, frequency, momen-
tum, and energy of photons.

4.2 Photoelectric effect

The photoelectric effect is one of the simplest physical situations in which we can observe
the quantization of light. The experiment is as follows. Light is incident on a metal or
other material, and there is a metallic electrode nearby. Electrons that are emitted from
the material hit the electrode and cause a current to be measured.

Figure 4.1 shows the current observed for a fixed intensity of light, as a function of
the frequency. We will explain three observations using the concept of photons:

1. There is a threshold below which no current is emitted, and then current appears.

2. For a fixed intensity of light, the current is maximal at the lowest frequency, and
decreases as 1/f as the frequency increases.

3. However, the kinetic energy of emitted electrons depends linearly on the frequency
of light.

It turns out that one can explain this and many other experiments by proposing that
energy can be added and removed to the electromagnetic field in quanta with energy
~ω = hf . We call these discrete packets photons.
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Figure 4.1: Sketches of the photoelectric effect. (left) The current observed for a fixed
intensity of light of a given frequency. (right) The kinetic energy of ejected electrons as a
function of the frequency of incident light.

The threshold effect is explained because takes a certain amount of energy to eject an
electron from a metal. This energy is called the work function, Φ . The energy balance
equation is

Einitial = hf −Φ (4.1)
Efinal = KEelectron, (4.2)

where KEelectron is the kinetic energy of the ejected electron. If hf < Φ , then the kinetic
energy is negative, which is impossible, so the electron cannot make it out of the material.
We begin to get a current when hf = Φ , so that is where the current goes from zero to non-
zero. The linear relationship between kinetic energy and frequency is also explained
by Eqn 4.2. To compute h, we can plot the kinetic energy of the ejected electrons versus
the frequency of the light. The slope is h.

The decrease in current is explained because each electron is ejected by a single pho-
ton. The number of photons arriving per second in a light beam with power P is given by
P
hf . Therefore, for a constant P , the electrons per second ejected will go as 1/f , as shown
in Fig 4.1.

Photons can independently be verified by setting up a very sensitive photodetector
and finding that the energy comes in discrete packets; for light of frequency f , the energy
always arrives in amounts of hf . 1

1For more experiments that show the existence of photons, look up blackbody radiation and Compton
scattering. Lasers are also based on the properties of photons!
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Table 4.1: Ways to write the momentum and energy of the photon
Energy E hf = ~ω = hc

λ = ~ck

Momentum p h/λ = ~k = hf
c = ~ω

c

4.3 Energy and momentum of a photon

We determined that the quantum of energy for light is equal to hf . There is also a cor-
responding momentum associated with that energy, which is given by p = h/λ. This can
be determined by performing similar types of experiments to those that determined the
energy of the photon. There are various relationships that are valid for a photon’s mo-
mentum and energy, summarized in Table 4.1.

4.4 The relation between intensity and number of photons

We can use unit analysis to determine how many photons are incident on an object. Sup-
pose that light of frequency f is incident on an object, with observed intensity I . In SI
units, I is given in W/m2. We can compute the total power incident by multiplying I by
the area of the object, so P = IA, which has units of W. One photon has energy hf , so the
number of photons incident per second is N = IA

hf .
There is a force exerted by this light on the object, since the photons also have mo-

mentum. Newton’s second law is F = dp
dt (F = ma is only true if mass is constant, but

photons don’t have mass!). Suppose that the photons are absorbed. Then the momentum
imparted per second is pN = hN

λ = F. If the photons are reflected (say a mirror), then the
force is twice that.



5 Interference of individual photons
We now have an idea that light comes in packets that we call photons. It’s tempting and
not unreasonable to think of these packets as particles, but we have to remember that at
the same time, these photons also exhibit interference. What if we turn down the laser
in the two-slit experiment so much that only one photon per second can pass through?
If we keep a count of photons on the screen, will we still see an interference pattern?
The surprising fact is that we do still see an interference pattern in this case; while we
will see individual events on the screen, they will not occur where the light interferes
destructively. It’s as if the photon can interfere with itself!

Quantum mechanics is about creating a description of the world that can accomodate
the fact that there are discrete particles that exhibit interference. It does this by using a
complex number,1 called an amplitude to represent the state of a particle. The amplitude
is represented by the character Ψ in quantum mechanics, and is called the wave function.
The probability density to find a quantum particle at a given position at a given time is
given by the absolute value squared of the wave function: P (x, t) = |Ψ (x, t)|2.

5.1 After this unit, you should be able to

• Manipulate complex numbers to find the magnitude squared, complex conjugate,
and using Euler’s equation.

• Given the wave function of a particle Ψ (x), compute the probability of finding the
particle between two locations a and b.

• Normalize simple wave functions.

5.2 Quantum mechanics is a way to compute probability

In the classical description of light, we computed the intensity I , which has units of W/m2

(or J/s m2in SI. To get the total power, we must integrate over the area the intensity is in-
cident upon. The number of photons per second in a given area is P /hf , as we determined
in Chapter 4

It has been observed experimentally that even if we decrease the intensity enough so
that P /hf (incident on the screen) is a few photons per second, we still see interference.
What’s more, if we have a sensitive enough detector,2 it doesn’t activate continuously;
instead we see individual deposits of energy equal to hf . These deposits of energy come
completely at random, but on average the number per second is given by the power.

1It is technically possible to make a quantum theory without complex numbers, but it is much harder
to deal with!

2If you are interested in how we construct such a detector, one option is called an avalanche photodiode,
which uses technology similar to transistors to generate current whenever a photon is absorbed.
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The insight of quantum mechanics is that the random arrival of individual photons
can be understood if, for every photon that travels through the system, it has a probability
to be absorbed by the screen at a given location.

5.3 Probability density

A probability is a number between 0 and 1. A probability density is a function, often
called ρ(x), that represents the probability per unit length. This is similar to the relation-
ship between intensity and power; intensity is the power per unit area, and the power is
the total amount of energy per second.

Probability densities have the following properties:

ρ(x) ≥ 0 (5.1)

and so-called normalization ∫ ∞
−∞
ρ(x)dx = 1. (5.2)

Normalization ensures that the probability of the particle being somewhere is equal to 1.
The probability for x to be between two points a and b, assuming a < b, is

P (a < x < b) =
∫ b

a
ρ(x)dx. (5.3)

Because of Eqn 5.2, this probability is always between 0 and 1. Note that ρ can actually
have a value greater than 1, as long as it is normalized.

As mentioned above, ρ is proportional to the intensity. The probability density of a
photon impacting the screen is proportional to the number of photons/m·s impacting
the screen. However, since probability density can’t interfere (it’s always greater than
zero), we will need something else. To get interference, we will need something that adds
like phasors and plays the role of the electric field in classical light interference. This
something is the wave function, which is represented using complex numbers.

5.4 Complex numbers

In quantum mechanics, we describe the interference of particles using complex numbers.
This is very similar to the phasor description of waves. Some rules:

• i =
√
−1.

• eiθ = cos(θ) + i sin(θ)

• For a complex number z = x+ iy, the complex conjugate z∗ = x − iy

• For a complex number z = x+ iy, the absolute magnitude |z|2 = zz∗ = (x+ iy)(x− iy) =
x2 + y2

For complex conjugation, the main thing is to remember that the i gets a minus sign.
We will sometimes write complex numbers as Aeiθ, where A is some real overall am-

plitude. This has the advantage that the absolute magnitude is AeiθAe−iθ = A2.
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5.5 Computing the probability of the photon hitting the
screen at a given position using wave functions

We are going to make a hypothesis here, and check whether the description matches our
observations (hint: it will). We will assume that the probability density of a photon with
wavenumber k hitting the screen at position y:

ρ(y, t) = Ψ (y, t)Ψ ∗(y, t) (5.4)

Let’s suppose that the wave function is computed as follows:

Ψ (y, t) = A
(
ei(kr1−ωt) + ei(kr2−ωt)

)
(5.5)

A will need to be determined by normalization (see later), but we will not need it to
determine where the maxima and minima are. Later in the course, you will see that this
is the wave function of a particle with momentum ~k traveling in a line.

So

ρ(y, t) = |A|2
(
ei(kr1−ωt) + ei(kr2−ωt)

)(
e−i(kr1−ωt) + e−i(kr2−ωt)

)
(5.6)

= |A|2
(
2 + ei(kr1−kr2) + e−i(kr1−kr2)

)
(5.7)

= 2|A|2 [1 + cos(k(r1 − r2))] (5.8)

= 4|A|2 cos2
(
k
r1 − r2

2

)
, (5.9)

where we used the identities 2cosα = eiα + e−iα and 1 + cosα = 2cos2 α
2 . Note that this is

the same dependence as the classical intensity formula we derived in Unit 2.
You may correctly wonder why we chose that particular form for the wave function.

It is not the value of the electric and magnetic fields as in the wave description of light,
since its units are not correct for that (it must integrate to a probability, so the units of Ψ
are actually 1/

√
m in SI). It is a probability amplitude, which is a new concept introduced

by quantum mechanics. In the coming chapters, we will learn how to derive this wave
function, but for the moment we are just trying to describe the observed phenomena.

5.6 Normalization of wave functions

The probability of observing the particles somewhere is equal to 1. So if the wave function
is Ψ (x), then ∫ ∞

−∞
Ψ (x)Ψ ∗(x)dx = 1 (5.10)

For example, consider a wave function given by Aeikx, for 0 < x < L. Then∫ ∞
−∞

Ψ (x)Ψ ∗(x)dx = 1 (5.11)

A2
∫ L

0
eikxe−ikx = A2L. (5.12)
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So A =
√

1/L in order to keep the wave function normalized. Then the probability of the
particle being observed in a < x < b is∫ b

a

1
L
dx =

b − a
L
, (5.13)

as long as a,b are greater than zero and less than L. So this wave function represents a
particle that has an equal probability to be found anywhere between 0 and L.



6 Polarization

6.1 After this unit, you should be able to

• Predict the probability of a photon passing through a sequence of polarizing filters,
given its initial polarization state.

• Explain whether two paths are distinguishable or indistinguishable, and whether
there will be interference based on those aspects.

6.2 Light polarization as a quantum state

Light can be polarized either horizontally or vertically. How do we describe that for a
photon using quantum mechanics? Let’s suppose that the photon is moving in the z
direction, so its polarization is in the x,y plane. Let’s call horizontal (x) polarization Ψh
and vertical (y) polarization Ψv . The quantum state associated with each of them we will
call h and v. A general quantum state for polarization will be Ψ = aΨh+bΨv , where a and
b can be any complex numbers, so long as |a|2 + |b|2 = 1. Note that in this case, we have
only discrete possibilities, as opposed to the case when we are considering the probability
that a particle is at a given position (Ψ (x) from the previous section).

In quantum mechanics, diagonal and circular polarization are written as superposi-
tions of vertical and horizontal polarization as shown in Table 6.1. Classically, you might
expect there to be a continuum of values. Why don’t we write it as Ψ (θ), with θ the an-
gle from the y axis? This is actually a very deep question which we cannot answer very
rigorously in this class; you will learn this in advanced quantum mechanics. One way of
looking at this is to note that in polarization, a diagonal polarization is Ψh + Ψv . On the
other hand, a particle at x = 1 nm is not a superposition of the particle being at x = 0
nm and x = 2 nm. For this course, it suffices to know that some things (position, mo-
mentum) are represented by a continuous variable while other things (polarization) are
represented by discrete variables.

Table 6.1: Different polarizations of light written as linear combinations of horizontal(h)
and vertical(v) polarization.

Polarization direction State
Vertical Ψv
Horizontal Ψh
Diagonal (45 degrees) 1√

2
(Ψh +Ψv)

Diagonal (-45 degrees) 1√
2
(Ψh −Ψv)

Circular (right-handed) 1√
2
(Ψh + iΨv)

Circular (left-handed) 1√
2
(Ψh − iΨv)
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6.3 Measurement of polarization

Now let’s suppose what happens when a photon encounters a filter that only lets verti-
cally polarized light through it. What do you suppose will happen? Surely, if the photon
is vertically polarized, it will simply pass through the filter. On the other hand, if the
light is horizontally polarized, it will not pass through the filter.

What about when the light has a diagonal polarization, so that its polarization is given
by 1√

2
(Ψh +Ψv)? It turns out that the photon has a 50% probability of passing through a

vertical filter. And after the photon passes through the filter, its polarization is Ψv . Why
has it changed? Well, we said before that only vertically polarized light passes through
the filter, so if the photon passed through the filter, it must be vertically polarized.

The polarization Ψ is telling us the probability that the photon will pass through a
filter. If the polarization is given by aΨv + bΨh (with |a|2 + |b|2 = 1), then the probability of
the photon passing through the vertical filter is given by |a|2, and of passing through the
horizontal filter is given by |b|2.

6.4 Combining spacial and polarization wave functions

In the previous section, we did not worry about the location of the wave function; only
whether it was polarized in the horizontal or vertical direction. We can include the loca-
tion information as follows:

Ψ (x, t,p) = a(x, t)Ψh + b(x, t)Ψv , (6.1)

where p stands for the polarization.
To compute the probability that a particle is observed with h polarization anywhere

at time t, you compute

P (h) =
∫ ∞
−∞
|a(x, t)|2dx. (6.2)

The probability of observing the particle between x1 < x < x2 and of polarization v is:

P (x1 < x < x2,v) =
∫ x2

x1

|b(x, t)|2dx. (6.3)

To normalize the wave function, we want to enforce that the probability of observing the
photon anywhere, of any polarization is equal to 1. So that means that

P (h) + P (v) =
∫ ∞
−∞
|a(x, t)|2 + |b(x, t)|2dx = 1. (6.4)

The Ψh and Ψv objects behave a lot like unit vectors. Wave functions add component-
wise:

Ψ1(x, t,p) +Ψ2(x, t,p) = (a1(x, t) + a2(x, t))Ψh + (b1(x, t) + b2(x, t))Ψv . (6.5)

So we add the horizontal and vertical parts separately, then square them to get the proba-
bility. This means that the vertical part only interferes with the vertical part, and the hor-
izontal part only interferes with the horizontal part. We will combine this with Eqn 6.3
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Figure 6.1: An interferometer with polarizing filters on each path.

in the next section to show why it’s impossible to tell which path a particle travels when
it exhibits interference.

6.5 Which path?

We now have a description based on probability amplitudes (the wave function) that,
when squared, give the probability of observing a photon on the screen. It turns out that
this gives the exact same intensity patterns as the light wave description from PHYS 212,
but can accommodate the fact that light has a particle-like nature. In the quantum de-
scription of the interferometer or two slit experiment, the probability amplitudes interfere
between the two possible paths to create the intensity patterns.

Which path did the photon travel through? Consider an interferometer experiment as
shown in Fig 6.1, in which we place polarizing filters along each path, one of which only
allows polarization in the v direction (path 1) through, and the other that allows only
polarization in the h direction (path 2) through. That way, if we see a photon polarized in
the v direction, we would infer it came through path 1 and in the h direction, we would
infer that it came through path 2. When we do that, the interference pattern disappears!
This may seem magical, but it is perfectly described by the wave function description.

We want to compute the value of the wave function at the detector. First, let’s consider
the case without the polarizers:

Ψ1(detector,p) +Ψ2(detector,p) = a(eikx1 + eikx2)Ψh + b(eikx1 + eikx2)Ψv . (6.6)
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x1 is the total distance photons in path 1 take, and x2 is the same for path 2. We are
dropping the t dependence because it ends up not mattering. We will also not worry
about normalization; we would have to do a little more work to determine the absolute
values of a and b. We have the following probabilities for observing a photon:

P (h) = |a|2|eikx1 + eikx2 |2 (6.7)

P (v) = |b|2|eikx1 + eikx2 |2 (6.8)

The probability of observing a photon of either polarization is

P (h) + P (v) =
(
|a|2 + |b|2

) ∣∣∣eikx1 + eikx2
∣∣∣2 (6.9)

This is the same result as for classical light, which we can get by pulling out a factor of
eikx1 : ∣∣∣eikx1 + eikx2

∣∣∣2 = |eikx1 |2
∣∣∣1 + eik(x2−x1)

∣∣∣2 (6.10)

=
∣∣∣1 + eik(x2−x1)

∣∣∣2 (6.11)

=
(
1 + eik(x2−x1)

)(
1 + e−ik(x2−x1)

)
(6.12)

= 1 + eik(x2−x1) + e−ik(x2−x1) + 1 (6.13)

= 2 + 2cos(k(x2 − x1)) = 4cos2
(
k(x2 − x1)

2

)
(6.14)

where we used a trigonometric identity in the last line. This paragraphs proves that
without the polarizers, we obtain the interference effects observed in an interferometer
setup.

Now, let’s compute the wave function with the polarizers. Now,

Ψ1(detector,p) +Ψ2(detector,p) = a(eikx2)Ψh + b(eikx1)Ψv . (6.15)

Note that we removed the path 1 term from the horizontal part of the wave function,and
the path 2 term from the vertical part of the wave function. This is because if the photon
passes through a vertical polarizer, afterwards it is only vertical; there is no horizontal
component, and vice versa. Computing probabilities is much easier in this case:

P (h) = |a|2|eikx2 |2 = |a|2 (6.16)

P (v) = |b|2|eikx1 |2 = |b|2 (6.17)

So we can see that if we observe a horizontally polarized photon, it must have gone
through path 2. But there is no interference! Changing the length of the arms will not
change the intensity at the detector.

In general, any time we attempt to mark which path a photon travels, that new infor-
mation must be described using a new variable in the wave function, which then destroys
interference.



7 Quantum description of matter

We introduced quantum mechanics and the wave function as a way of simultaneously ac-
counting for the wave-like and particle-like behavior of light. What about objects that we
normally think of as particles? To be concrete, let’s talk about electrons. What happens
when we send electrons through two slits? This experiment has been performed, and it
turns out that electrons also show interference patterns, if the conditions are just right.
And in fact, the math that we used in interference of photons also works for electrons! So
we can infer the wave number/wave length of the electrons using the distance between
maxima.

7.1 After this unit, you should be able to

• Use the relationship between a free particle’s momentum and wavelength to com-
pute the outcome of interference experiments on matter.

• Explain whether a wave function has definite momentum.

• From a superposition of eigenstates, compute the probability of a measurement out-
come.

• Apply the Heisenberg Uncertainty Principle to determine the limits of what can be
predicted about measurement outcomes.

7.2 Relationship between momentum, energy, and wave
length for free particles

Suppose that we send electrons (one at a time) with a given momentum p towards a two-
slit experiment. After many electrons have passed through, we count how many electrons
were incident on what part of the screen. The result is something like the figure. We then
measure the distance between maxima and infer k = 2π

λ . We do that for several different
values of p, as shown in Fig 7.1. Empirically, there is a linear relationship such that p = ~k,
or alternatively p = h/λ. This is called the de Broglie wavelength. Note that this is the same
relationship that photons have.

In this class we will only treat electrons which are moving much less than the speed

of light, so the relationship Ekinetic = p2

2m is applicable. So therefore, Ekinetic = ~
2k2

2m = h2

2mλ2 .
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Figure 7.1: (left) Diffraction of electrons through two slits. The z axis is the count of
electrons, which arrive at random roughly every 165 µs. From Frabboni et al. Ultrami-
croscopy 116, 73–76 (2012). (right) The relationship between the incident momentum of
the electron and the wave number k inferred from the spacing of the peaks.

7.3 Wave function of a particle with definite momentum

We can explain the experiments if we assume that the wave function of a particle with
momentum p1 is:

Ψ (x, t) = Aei(kx−ωt), (7.1)

where k = p/~. We don’t yet know how to determine ω (we will do that in Unit 10).
As a simplification, if we suppose that the particle is in a large box of length L, then

A =
√

1
L from the normalization condition. So for the moment, let’s just consider the wave

function at a given time t = 0, so
Ψ (x) = Aeikx. (7.2)

The wave function tells us the probability of measuring quantities. This is one of
the very fundamentally different things about the quantum mechanical description as
opposed to the classical mechanics description.

For the wave function in Eqn 7.2, if we measure the momentum, say by measuring
the change in momentum the particle imparts on some other thing when it impacts it, we
will always find that the particle has momentum p. On the other hand, if we measure the
location of the particle, then we will find that it can be anywhere within that large box,
since

ρ(x) = Ψ (x)Ψ ∗(x) = |A|2. (7.3)

1In quantum mechanics, we work with momentum rather than velocity. Part of the reason is that the
math is easier this way. Another reason is that momentum is actually more fundamental to physics than
velocity. For example, the more general formula for Newton’s first law is F = dp

dt .
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This is referred to as uncertainty in quantum mechanics. For this particular wave func-
tion, we can predict the outcome of a measurement of the momentum very precisely (it’s
always p), but we cannot predict the outcome of a measurement of the position very pre-
cisely. We would find it somewhere in the box, but it’s completely random where we will
find it!

7.4 Eigenstates

The wave function in Eqn 7.2 is called an eigenstate2 of momentum. This means that
when we measure the momentum of the particle with that wave function, we can predict
that we will obtain one particular value of the momentum, ~k. We will also sometimes
say that such a wave function has definite momentum.

One can also have eigenstates of position, which are wave functions that are only non-
zero in one location. The mathematics of this is a little bit beyond this course,3 so we will
not cover this. In later units, we will learn how to find energy eigenstates, which are very
important in quantum mechanics.

7.5 Superposition of wave functions

Suppose we have a particle which we confine to a box of side L with wave function

Ψ (x) = A
(
eik1x + eik2x

)
(7.4)

with k1 = 2π
L and k2 = 4π

L . What will happen when we measure the momentum of a
particle with this wave function? Since the wave function is an equal superposition of
two wave functions with different momenta, we have an equal probability of measuring
~k1 and ~k2. This is not a momentum eigenstate since two different momenta could be
measured.

In general, if the wave function is given by

Ψ (x) = A
(
aeik1x + beik2x

)
, (7.5)

we will obtain ~k1 with probability a2

a2+b2 and ~k2 with probability b2

a2+b2 . The denominator
(a2 + b2) ensures that the probabilities add to 1 (normalization).

What about measuring the position of the particle? From Fig 7.3, we can see that
the position is now more likely to be measured near the middle of the box than near the
edges. So this wave function has more uncertainty in momentum than the momentum
eigenstate, but less uncertainty in position.

2“Eigen” is from German, where it means ’same.’
3Dirac delta functions
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Figure 7.2: Making a localized wave function using a sum of momentum eigenstates.
Each row is one wave function; the left is the probability density for position, while the
right is the probability density for momentum. The momentum probability density is
a bunch of spikes because it is a sum of momentum eigenstates. To make a wave func-
tion with high probability to be in one position, it’s necessary to include many possible
momenta.
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Figure 7.3: The position and momentum probabilities for various wave functions. Each
row corresponds to one wave function with form proportional to exp(−x2/2σ2), and the
probability of measuring position and momentum is given in each column.



7.6. HEISENBERG UNCERTAINTY PRINCIPLE 35

7.6 Heisenberg uncertainty principle

It turns out that there is a general relationship between the spread of the momentum
values and the spread of position values, which is encoded in the Heisenberg uncertainty
principle:

∆x∆p ≥ ~

2
. (7.6)

This relationship puts fundamental physical limits on how well we can predict the out-
come of an experiment.4

4If you are paying extremely close attention, you might notice that a particle in a box with wave function
eikx seems to violate this. This is because we ignored boundary conditions. This is ok if the box is very large.



8 Time independent Schrödinger equation
To summarize the last few sections, in the quantum mechanics description of physics, the
primary description of the state is the wave function, Ψ . For a particle moving in one di-
mension, the wave function is Ψ (x, t), while for the polarization example, it is represented
by two numbers. The wave function determines the probability of a measurement, which
is given by the abolute square of the wave function. So far, we discussed how wave func-
tions give the probability of measuring a particle at a given position, polarization, and
momentum.

In this section, we consider how to compute the result of an energy measurement. We
will find out that in many situations, the energy we can measure in a quantum system
will only be one of several discrete amounts, or quanta. This is the origin of the name of
quantum mechanics!

8.1 After this unit, you should be able to

• Check whether wave functions satisfy the time-independent Schrödinger equation.

• Explain how the Schrödinger equation is consistent with experimental observations
of the relationship between wavelength, momentum, and energy for a free particle.

• For a particle in an infinite square well of length L, compute the allowed energies
that could be measured.

• If the particle is in an energy eigenstate of the infinite square well with quantum
number n, compute the probability of it being found between x = a and x = b.

8.2 The equation

The time-independent Schrödinger equation tells us which wave functions are energy
eigenstates. This will in turn allow us to determine what energies a system can take on.

For this section, we will just consider a wave function at a given time, which we will
write Ψ (x). For a particle of mass m in one dimension, the Schrödinger equation is

− ~
2

2m
d2Ψ (x)
dx2 +U (x)Ψ (x) = EΨ (x). (8.1)

In this equation, U (x) is the external potential energy.
There are several important things to note about this equation:

• Only certain wave functions satisfy Eqn 8.1. These special wave functions are called
energy eigenstates

• E is a number that gives the energy of the wave function.
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• If a particle is in an energy eigenstate, any measurement of its energy will result
in E. For many systems, only certain values of E have a wave function that satifies
Eqn 8.1.

• Energy eigenstates are also called stationary states. We will show this in the time
dependence sections.

8.3 Example: free particle

Let’s describe a free particle using the Schrödinger equation. In that case, the external
potential is zero (that’s what “free” means!), and the equation is:

− ~
2

2m
d2Ψ (x)
dx2 = EΨ (x). (8.2)

The most common solution method is to guess a wave function and check whether it
satisfies Eqn 8.2. Let’s guess Ψk(x) = Aeikx as the wave function. Then

− ~
2

2m
d2Aeikx

dx2 = − ~
2

2m
(ik)2Aeikx =

~
2k2

2m
Ψk(x). (8.3)

So this wave function satisfies the Schrödinger equation if the energy E = ~
2k2

2m , and any
wave function of this form is an energy eigenfunction. In this case, k can be any real
number, so the energy can take on any positive value. In quantum mechanics, k is called
a quantum number, which is a label for the energy eigenstates.

This makes some sense; we said earlier that a particle with wave function eikx has
momentum p = ~k. For a free particle, all energy is kinetic energy, so we would expect
the energy to be

1
2
mv2 =

p2

2m
=
~

2k2

2m
. (8.4)

So the derivative term is associated with kinetic energy, which matches theU (x) term that
is associated with potential energy.

8.4 Example: infinite square well

Now we consider a case where U is not just zero. Imagine creating a well (a 1D box) in
which the particle is allowed to move freely from x = 0 to x = L, but encounters an infinite
potential barrier at either side. In this case,

U (x) =

0 if 0 < x < L
∞ otherwise

(8.5)

Given this, let’s look back at Eqn 8.1 to see what kind of wave function can satisfy the
equality. The first thing we can notice is that since U is ∞ outside the box, the only way
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for the equality to be satisfied is for either Ψ (x) to be zero, or have infinite energy. The
more physically possible case is for the wave function to be zero outside the box. This
makes some sense classically; if a particle is inside a box with infinitely hard walls, there
is zero probability to find it outside the box.

Inside the box, U = 0, so the Schrödinger equation looks a lot like the free particle
case. However, we have an additional constraint–the wave function goes to zero at the
edges. This has to happen in order for the Schrödinger equation to be satisfied, since the
potential energy is infinite there. A guess wave function that works is

Ψ (x) =

Asin(nπxL ) if 0 < x < L
0 otherwise,

(8.6)

where n is an integer.
We can find A by enforcing normalization:∫ L

0
A2 sin2

(nπx
L

)
dx = 1. (8.7)

You can verify that if A =
√

2
L , then this integral is equal to 1. By plugging our guess Ψ

into the Schrödinger equation, we can get the energy:

En =
~

2n2π2

2mL2 (8.8)

Important things to note about this:

• Because of the boundary conditions (Ψ must be zero at 0 and L), only integer values
of n are allowed.

• The more oscillations in the wave function, the higher the energy.

• Since only certain values of n are allowed, only certain values of the energy are
allowed.

8.5 What it means to have only certain energies allowed

In the previous section, we saw that sometimes a quantum system can only be observed
to have certain values of the energy. Let’s investigate what that means practically. Let’s
suppose that we have a quantum system (an atom) with two allowed energy levels, E1
and E2, with corresponding energy eigenstates Ψ1 and Ψ2. There may be more energy
eigenstates but we will just consider those two for simplicity.

Imagine that the atom has wave function equal to the ground state (lowest energy
state), Ψ1. As we will find later, if the atom is not disturbed, it will remain in the ground
state forever. Suppose now that we disturb the system by allowing a photon to come
near it. There is a chance that the photon will interact with the atom. Let’s consider the
possibilities:
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1. At the end of the process, a photon comes out with energy ~ω and the atom is left
with energy E1.

2. The photon is absorbed by the atom. No photon comes out and the atom is left with
energy E2.

While possibility 1 can always happen, possibility 2 can only happen if E2−E1 = ~ω. This
is because energy is still conserved in quantum mechanics; so if we started with E1 + ~ω
energy, we must end with that much energy when everything is settled. Similarly, if the
atom started in Ψ2, then it might emit a photon with energy ~ω = E2 −E1.

Atoms, liquids, solids, etc can only absorb photons with energy equal to the difference
between their energy levels. This is why glass is transparent, why we can see through air
and water. It is why rose-tinted glasses remove all colors but rose. Similarly, quantum
systems can only emit photons with energy equal to a difference between their energy
levels. This is what gives neon lights their particular color, and in general is what gives
objects their color. The list of energies that a given quantum system can obtain is called
the spectrum. In Latin, spectrum meant ‘image’ and indeed the spectrum of a quantum
system determines what type of light it interacts with.

8.6 Example: photon emission/absorption

A hydrogen atom has the following energy levels: -13.6 eV, -3.4 eV, and -1.5 eV. Suppose
that it starts in the ground (lowest energy) state. It can absorb light with photon energy
either (-3.4- (-13.6) )= 10.2 eV, or (-1.5 - (-13.6))= 12.1 eV. We can solve for the frequency
of that light by using hf = E, and therefore f = E/h. Here it is useful to use h in terms of
electron volts (eV) to get:

f1 =
10.2 eV

4.135667× 10−15eV · s
= 2.466× 1015s−1 (8.9)

and similarly for f2. Those are the frequencies of light that can be absorbed by a hydrogen
atom in the ground state.1 If the hydrogen atom absorbs light of frequency f1, then it is
now in the state with energy -3.4 eV.

On the other hand, suppose that the hydrogen atom is in the first excited state (the one
at -3.4 eV). It may be in that state because it absorbed light as in the previous paragraph,
or we can induce an excitation using an electric field or temperature. In this case, it can
absorb light of energy (-1.5 - (-3.4))= 1.9 eV to go to the level at -1.5 eV, or it can emit
light of energy 10.2 eV to go back to the ground state. This is the origin of the emission
lines of atoms.

1In reality, this is broadened a little bit by temperature effects.



9 Energy levels

9.1 After this unit, you should be able to

• Compute what frequency of light can be emitted and absorbed, given a set of al-
lowed energies for a quantum system.

• Use the allowed energies for a system to explain whether it is more likely that the
system is described by a harmonic oscillator or infinite square well potential.

• Determine the potential that led to a given measured spectrum.

9.2 Harmonic oscillator: verifying the ground state

In the previous section, we considered only a very simple and idealized potential, U (x).
This choice was to make the math relatively tractable. In reality, U (x) can be more com-
plicated and can require advanced techniques to find the energy eigenstates from the
Schrödinger equation. Solving the Schrödinger equation for the general case of many
particles is an area of active research in physics, so in this course we will not cover ex-
plicit solution of the equation. However, it is much easier to check whether a given wave
function is an energy eigenstate for a given U (x).

Let’s go through this for a harmonic oscillator potential. The Schrödinger equation is
given by:

− ~
2

2m
d2Ψ (x)
dx2 +

1
2
kx2Ψ (x) = EΨ (x). (9.1)

In contrast to the infinite square well, there are no boundary conditions on this; the wave
function can be non-zero everywhere in space.

Let’s try a guess wave function: Ψ (x) = Asin(bx), where we use b because k is already
taken for the spring constant. Then plugging that into the equation, we get

~
2b2

2m
Asin(bx) +

1
2
kx2Asin(bx) = EAsin(bx) (9.2)

~
2b2

2m
+

1
2
kx2 = E (9.3)

(9.4)

This is NOT an energy eigenstate, since there is no way to set A, k, and E such that this
equation is satisfied at all values of x.

Let’s try a better guess1: Ψ (x) = Ae−αx
2
. We take the derivative on the left-hand side

1The guess and check method is a long-standing and useful tool in physics!
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and find:

− ~
2

2m
A(4α2x2 − 2α)e−αx

2
+

1
2
kx2Ae−αx

2
= EAe−αx

2
(9.5)

x2
(

1
2
k − 4~2α2

2m

)
+
(
~

2α
m
−E

)
= 0 (9.6)

The parts in the parentheses must each equal zero for this equation to be true for all
values of x. This means that

α =
1

2~

√
mk (9.7)

E =
~

2α
m

=
~

2m

√
mk. (9.8)

To simplify the equation for energy, often this is written in terms of ω, where k = mω2,
so that E = ~

2ω. Note that when we solved for α, we could have chosen the negative
value. That would not have worked because ex

2
diverges as x goes to infinity, so α must

be positive for the wave function to be normalizable.

9.3 Harmonic oscillator: spectrum

It turns out that just like the infinite square well, there are an infinite number of discrete
solutions to the Schrödinger equation. The functions are a bit complicated and don’t offer
a lot of physical intuition, so we will not list them here. However the spectrum is very
simple: En =

(
n+ 1

2

)
~ω, where n = 0,1,2, . . .. Note here that n can be zero, unlike the

infinite square well.
Contrast the harmonic oscillator result with the result for the infinite square well: En =

~
2n2π2

2mL2 , with n = 1,2, . . .. The harmonic oscillator has evenly spaced energies, called energy
levels, while the infinite square well has energies that get farther apart as n increases.
The difference between these two is the potential energy term, U (x). This means that
by looking at the spectrum; that is, what light is emitted and absorbed by the object, we
can tell something about the potential energy in the quantum system! If for example we
see evenly spaced levels, then it may be that the potential energy looks like a harmonic
oscillator. By measuring the spacing between the levels we can tell what the value of k is
for that oscillator.

9.4 Using energy levels to determine the potential

A common way of understanding the vibrations in molecules is to send infrared light
through a gas or suspension of them, and measure what frequencies are absorbed by the
vibrations of atoms. These vibrations are often well-described as harmonic oscillators.
Each type of vibration has its own effective mass and spring constant.
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Figure 9.1: Simulated transmission of light through a gas of O2 molecules. There is a dip
in transmission of light which corresponds to the vibration of the two oxygen atoms.

As an example, when infrared light is passed through the atmosphere, which is filled
with water, some frequencies are absorbed by the water. By reading off the frequency of
light, we can tell ω by using

Ephoton = hf (9.9)

Ephoton =
3
2
~ω − 1

2
~ω = ~ω, (9.10)

since the photon will only be absorbed if it matches the difference in energy levels of the
vibrational system. This shows up as dips in the amount of light from the sun that we
observe on earth (Fig 9.1). Each dip represents one vibrational state.



10 Time dependence in quantum mechanics
So far we have focused on wave functions at a given time. In reality, wave functions
change with time. In this section, we will see that:

1. If a particle’s wave function begins in an energy eigenstate, its probability density
will not change with time.

2. If a particle’s wave function is a superposition of energy eigenstates, then the proba-
bility density will oscillate with a frequency proportional to the difference between
the energy of the different states.

10.1 After this unit, you should be able to

• Find the oscillation frequency of a superposition of two eigenstates, if the energy
difference is given.

• Verify whether a wave function given as a function of x and t satisfies the time-
dependent Schrödinger equation.

10.2 Time dependent Schrödinger equation

The time dependent Schrödinger equation was not derived from anything; it’s an equa-
tion that, as it turns out, satisfies a few things that we already know about quantum
particles, along with a few physical principles. It is given as follows:

i~
∂Ψ (x, t)
∂t

= − ~
2

2m
∂2Ψ (x, t)
∂x2 +U (x)Ψ (x, t) (10.1)

Some things to note about this equation:

• This is a partial differential equation. ∂f (x,y)/∂y means to keep x constant and take
the derivative with respect to y.

• The right hand side is very similar to part of the time independent Schrödinger
equation.

• There is the imaginary number i in the equation, multiplying the time derivative.
The solutions will be complex.

10.3 Energy eigenstates are stationary

In this section, we will prove that energy eigenstates have a probability density that does
not depend on time. First, let’s consider what that statement means. The probability
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density is ρ(x, t) = |Ψ (x, t)|2. That means that Ψ itself might depend on time, but as long
as the magnitude squared does not depend on time, this statement will be true.

Assume that at time t = 0 Ψ (x,0) is an energy eigenstate with energy E. Now let’s
guess a time dependence an energy eigenfunction: Ψ (x, t) = e−iωtΨ (x,0). We don’t know
ω yet; we will find it later by using the time dependent Schrödinger equation. This guess
satisfies the time-independent Schrödinger equation, Eqn 8.1 at all times:

− ~
2

2m
∂2Ψ (x, t)
∂x2 +U (x)Ψ (x, t) = EΨ (x, t). (10.2)

The factor e−iωt does not change this because it doesn’t depend on x, so it just cancels on
both sides. Therefore, we can write the time-dependent Schrödinger equation as:

i~
∂Ψ (x, t)
∂t

= EΨ (x, t) (10.3)

Now we only need to compute the time derivative on the left hand side:

i~
∂Ψ (x, t)
∂t

= i~Ψ (x,0)(−iω)e−iωt = ~ωΨ (x, t), (10.4)

where we have used the fact that (−i)i = 1. Combining these two equations, we get:

~ωΨ (x, t) = EΨ (x, t). (10.5)

So, this guess will work if ~ω = E.
Now let’s show that the probability density ρ(x, t) = |Ψ (x, t)|2 is not dependent on time:

ρ(x, t) = Ψ ∗(x, t)Ψ (x, t) = eiωtΨ ∗(x,0)e−iωtΨ (x,0) = Ψ ∗(x,0)Ψ (x,0), (10.6)

which is independent of time. The e−iωt is called a phase of the wave function, but that
doesn’t change the probability of what we observe.

10.4 Superposition

Now suppose that a particle starts out not in an energy eigenstate, but in a equal super-
position of two energy eigenstates. This is written as Ψ (x,0) = 1√

2
(Ψ1(x,0) +Ψ2(x,0)) Let’s

guess a functional dependence:

Ψ (x, t) =
1
√

2
(e−iω1tΨ1(x,0) + e−iω2tΨ2(x,0)), (10.7)

where ω1 = E1/~ and ω2 = E2/~. If you plug this into the time dependent Schrödinger
equation, you will find that the equation is satisfied, after doing some algebra. The time
dependent Schrödinger equation satisfies superposition–if two functions satisfy the equa-
tion, then any sum of those functions will also satisfy the Schrödinger equation.
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10.5 Beat frequencies

In the previous section, we showed that if the wave function at t = 0 is a superposition of
two energy eigenstates (specifically Ψ1 +Ψ2), then its time dependence is

Ψ (x, t) =
1
√

2
(e−iω1tΨ1(x,0) + e−iω2tΨ2(x,0)). (10.8)

Pulling out a factor of e−iω1t,

Ψ (x, t) =
1
√

2
e−iω1t(Ψ1(x,0) + e−i(ω2−ω1)tΨ2(x,0)). (10.9)

Now, let’s check the time dependence of the probability density of the Ψ (x, t) in Eqn 10.9.

ρ(x, t) = Ψ ∗(x, t)Ψ (x, t) (10.10)

=
1
2

(
Ψ ∗1 (x,0) + ei(ω2−ω1)tΨ ∗2 (x,0)

)(
Ψ1(x,0) + e−i(ω2−ω1)tΨ2(x,0)

)
(10.11)

=
1
2

(
|Ψ1(x,0)|2 + |Ψ2(x,0)|2 + e−i(ω2−ω1)tΨ ∗1 (x,0)Ψ2(x,0) + ei(ω2−ω1)tΨ1(x,0)Ψ ∗2 (x,0)

)
.

(10.12)

This might look like an intimidating formula, and it is not really necessary to memorize it.
The important thing to realize about this is that the only time dependence in it is in terms
like ei(ω2−ω1)t, which we know from Euler’s formula to equal cos((ω2 −ω1)t) + i sin((ω2 −
ω1)t). These are oscillatory functions, which repeat every with a period T = 2π/(ω1 −ω2).
Since ωn = En/~, we can also compute the period of oscillation as T = 2π~

E2−E1
. So the period

of oscillation depends on the difference between the energies of the states. If the states
are very close in energy, the oscillation is very slow, and if the states are very different in
energy, the oscillation is fast.

10.6 Summary

Our picture of quantum mechanics is now complete. A quantum mechanical object is
described using a wave function, Ψ (x, t). |Ψ (x, t)|2 gives the probability density of finding
the particle at any position x at a time t. The time evolution of Ψ (x, t) is given by the
time-dependent Schrödinger equation.



11 Tunneling
In classical mechanics, all quantities about a particle are definite at the same time. In
quantum mechanics, this is not the case; as we saw in the Heisenberg Uncertainty Prin-
ciple, the more definite the position, the less definite the momentum, and vice versa. A
similar thing occurs with energy and position. For all the situations we considered in this
class, the wave functions with definite energy were spread out over many positions. That
means that a wave function with more definite position will by necessity be a superpo-
sition of many energy eigenstates, and so its energy will be indefinite (when observed,
many energies have non-zero probability).

In classical mechanics, since position and energy are both definite, energy conser-
vation implies that if a particle starts with total energy E and moves in a conservative
potential energy U , it will never end up in a position where U (x) > E. In quantum me-
chanics, if we start a particle with definite total energy E, that implies that it is in an
energy eigenstate. That eigenstate may have a non-zero probability density at a point
where U (x) > E. So if we observe its position, we might see it at such a position. Conser-
vation of energy gets saved through the measurement process; the only events that occur
are the ones in which the total energy of the external world and the particle is conserved.

In this section, we will see that in quantum mechanics that means that the particle can
pass through barriers that would not be passable in classical mechanics, which is called
"tunneling." In quantum mechanics, there are no impassable barriers, but the probability
of tunneling decreases exponentially with the height and width of the barrier and the
mass of the particle.

One aspect of quantum mechanics is that it is much harder to solve for the dynamics of
a system than in classical mechanics. For all but some very simple systems, the solution
is done numerically using a computer, or we simply learn about quantum systems by
observing them experimentally. While this is highly technical, there are some useful
things that we can learn about quantum systems by understanding the output of the
experiments or numerical calculations. For this section, we will just provide you with the
energy eigenstates for a given potential, and discuss what they mean.

11.1 After this unit, you should be able to

• Estimate the energy difference between the ground and first excited state of a double
well as a function of the height and width, given the energy difference at a known
height and width.

• Compute the rate of a particle tunneling between two wells

• Identify the ’forbidden zones,’ in which a particle would never be found classically.
Compute the wave function decay when the potential is constant, given the energy
of the eigenstate.
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Figure 11.1: First two energy eigenstates for an electron in a finite well.

11.2 Finite square well

A finite square well is an approximate model of a quantum dot, which is a very small
feature in a semiconductor, or a nanoparticle ∼ 1 nm wide. Because of the interactions of
an electron with the nuclei and other electrons in the dot, it has a slightly lower potential
energy within the dot than outside it. Depending on the material, the attraction can be
stronger or weaker. The finite square well can also be thought of as a model of the cross-
section of a very narrow wire. In modern computing technology, the wires are only a few
nm across, and surrounded by material that prevents the electron from escaping the wire.

Fig 11.1 shows the first two energy eigenstates for an electron in a finite square well as
we change the depth, where we have used so-called atomic units, where energy is 27.2114
eV and position is 0.529 Å. This thus represents a quantum dot which is around 0.5 nm
across.

You may notice that when the well is very deep, the solutions look quite similar to the
infinite square well, with sinusoidal functions. As the well becomes more shallow, the
probability for the particles to be found outside the well increases. Note that despite the
way these are plotted, the energy of the eigenstates is still quite a bit smaller than the
depth of the well, so classically these particles would never be found outside the well,
but in quantum mechanics this is possible. The ground state energy also decreases as the
well depth decreases.
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Figure 11.2:

11.3 Two wells

Things get particularly interesting if we now consider two wires or two dots that are very
close to one another. This is diagrammed in Fig 11.2, where the lowest two energy eigen-
states are again plotted. Even though the energy of the particle is below the energy of the
well, the wave functions are non-zero even in the barrier, and connect in the middle. The
larger the barrier, the less they connect and the closer they get in energy.

The difference between the first two energies will be important later. In general, there
is an exponential dependence:

∆E = Ce−κ
√
mVL, (11.1)

where V is the height of the barrier, m is the mass of the particle, L is the thickness of
the barrier, and C and κ depend on specifics of the system, such as the exact shape of the
barrier.

11.4 Example: Time dependence of a superposition of the
ground and excited state of two wells

Since we now have the capability to explore dynamics in quantum mechanics, let’s ask
a dynamics question. Suppose the electron at t = 0 has a very high probability to be in
the left well. One wave function that satisfies this initial condition is Ψ = 1√

2
(Ψ1 +Ψ2).

This occurs because Ψ1 and Ψ2 are both positive in the left hand well, so when we add the
functions, they constructively interfere. In the right hand well, on the other hand, Ψ1 is
positive while Ψ2 is negative, so they destructively interfere.



11.4. EXAMPLE: TIMEDEPENDENCEOFA SUPERPOSITIONOF THEGROUNDANDEXCITED STATEOF TWOWELLS49

t=0.0 ħ/ΔE

t=0.349 ħ/ΔE

t=0.698 ħ/ΔE

t=1.047 ħ/ΔE

t=1.396 ħ/ΔE

t=1.745 ħ/ΔE

t=2.094 ħ/ΔE
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Position (Bohr)

t=6.283 ħ/ΔE

Figure 11.3: The time dependence of a particle that starts in one well of a double well
potential.
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The probability density of this superposition is given by the t = 0 line in Fig 11.3. The
time dependence of the wave function is computed by

Ψ (x, t) =
1
√

2

(
e−iE1t/~Ψ1(x) + e−iE2t/~Ψ2(x)

)
. (11.2)

The probability density |Ψ (x, t)|2 is plotted in Fig 11.3.
One can see that when t = π~/∆E, where ∆E is the energy difference between the two

energy eigenstate energies, the particle is very likely to be found in the second well. This
happens despite the fact that the energy of the particle, were we to measure it, is much
lower than the barrier between the wells. This does not happen in classical mechanics; if
water is flowing in a channel, it does not suddenly hop out into an adjacent channel.
However, for very small things, this can be a large effect.

11.5 Example: Rate of tunneling between wires

One of the limiting factors for modern computers is the tunneling between adjacent
wires. One can roughly model this as two wells separated by a barrier. The electrons
start in one wire, and occasionally will tunnel to the other one. The time it takes for an
electron to tunnel across the barrier between wires is roughly t = π~/∆E. So, if the wires
are L long, and there are ne electrons per unit distance in the wire, the current is

neL/t = neL∆E/π~ (11.3)

electrons per second. This effect limits how small the circuit components can be in elec-
tronics; if there is too much leakage between wires, the circuits will not function correctly.

11.6 The wave function in the classically forbidden region

If we know the energy of an energy eigenstate, and if the potential energy is constant in
the barrier, we can determine the form of the wave function in the classically forbidden
region. The time independent Schrödinger equation in this region is

− ~
2

2m
d2Ψ (x)
dx2 +VΨ (x) = EΨ (x) (11.4)

− ~
2

2m
d2Ψ (x)
dx2 = (E −V )Ψ (x) (11.5)

In the classically forbidden region, E−V is negative. A guess wave function that works is
Ae−Kx. This is exponential instead of sinusoidal because of the negative right hand side
of the equation. Taking two derivatives, we obtain

~
2K2

2m
= V −E (11.6)

K =

√
2m(V −E)

~
2 . (11.7)
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The decay constant is larger for larger mass particles, which means that these particles
penetrate less into the classically forbidden zone. This is one reason why we don’t see this
behavior at human scales; the masses are large enough that it is very unlikely to find a
macroscopic object in the classically forbidden region.

11.7 "Negative" kinetic energy (discussion)

It may be tempting to think that in the classically forbidden region, the particle has neg-
ative kinetic energy, since its potential energy is apparently higher than its total energy
"in that region." However, this reasoning doesn’t work in quantum mechanics; the kinetic
energy is not defined at a given position; the momentum is determined by the expansion
in momentum eigenstates, as we did in earlier units. Kinetic energy depends on the entire
wave function. One has to specify what is being measured, and the wave function will
give the probability of that measurement.

For example, suppose we wish to determine the outcome of a kinetic energy measure-
ment on a particle in a finite well. Measuring kinetic energy means measuring momen-
tum and then computing p2/2m. To compute the probability of a given momentum, we
must first expand the wave function in terms of momentum eigenstates:

Ψ (x) =
∑
k

cke
ikx (11.8)

where k is the wave number. The probability of obtaining momentum p = ~k is |ck |2.
Suppose that we measure some momentum p = ~k. Then the wave function afterwards
is Aeikx, where A is some constant amplitude. That wave function is not confined to
the well any more (it has probability of being anywhere), and will always have positive
kinetic energy. We would then have to measure the position and would have a probability
to measure it anywhere in space. If we try to measure position first, we would encounter
a similar situation.

Energy is still conserved in the act of measurement. For example, one way we could
measure the momentum of the electron is to have it absorb a photon of a given frequency
(which has a known momentum) and then measure the momentum of the ejected electron
by having it pass through a magnetic field and seeing how it curves. This method is
called angle-resolved photoemission (ARPES), and is used in research labs. Since the
collision is elastic, both total momentum and energy are conserved, as has been verified
experimentally. We never end up with a total energy less than the energy of the electron
plus the energy of the photon, unless something else took it.



12 Many electrons and band structure
So far in this course, we have only considered one particle at a time in one dimension.
In reality, materials are made up of many electrons and nuclei. For the purposes of this
course, we will assume that the electrons do not interact with one another. 1 For con-
creteness, we will just talk about multiple electrons in this section, although the rules do
apply to some other types of particles.

12.1 After this unit, you should be able to

• Determine the ground state and excited states of a system of non-interacting elec-
trons using energy level diagrams

• Be able to determine whether a material is transparent from the energy levels and
filling.

• Be able to determine whether a material is metallic from the energy levels and fill-
ing.

12.2 Spins

Electrons have an additional internal variable called spin, which we have not covered yet
in these notes. Roughly speaking, each electron has a magnetic moment that can either
point "up"(↑) or "down"(↓). The spin is very quantized, only allowing two outcomes, ↑ or
↓ or a superposition of the two, similar to horizontal and vertical polarization.

12.3 Filling levels in the non-interacting approximation

Suppose that we have solved for the energy eigenstates of a system. This means that
we have a list of states, Ψn, and energies En, which correspond to solutions of the time-
independent Schrödinger equation. For one electron, the ground state (lowest energy
state) is given by putting the one electron in the ground state. For two electrons, the
ground state is given by putting one electron of each spin ↑ and ↓ into the single-particle
ground state. Once two electrons are in the lowest energy state, that state is "filled," and
the next electron has to go in the next highest level. This procedure is called the aufbau
principle, which means “building up.”

It’s easiest to understand the aufbau procedure using an example. In Fig 12.1, we put
four non-interacting electrons in a harmonic oscillator such that ~ω = 2 eV. We mark the

1The non-interacting approximation turns out to work pretty well for a lot of materials like aluminum,
silicon, diamond, gold, and so on. The reason for this is actually not very simple and is the consequence of
emergence; the electrons do interact strongly but the emergent behavior is as if they don’t. The study of this
and the emergence of other behaviors is one of the main objectives of an entire subject of physics–condensed
matter physics.

52
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Figure 12.1: How to construct the ground and first excited state for four electrons in a
harmonic oscillator.
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Figure 12.2: An approximation to a solid of 20 atoms, with 20 wells and 40 electrons

electrons with up and down arrows. The total energy of the ground state is 2 ·1 + 2 ·3 = 8
eV. The states with electrons in them are called occupied states, and the states without
electrons in them are called unoccupied states. The lowest excited state is constructed by
moving one electron from the highest occupied state to the lowest unoccupied state. The
energy of this state is 2 ·1 + 3 + 5 = 10 eV. That means that this oscillator, if it starts in the
ground state, will absorb light at 2 eV. It will also absorb light at many other energies,
corresponding to different configurations of the electrons in the states.

12.4 Two wells, four wells,∞ wells

We are going to use our coupled wells from Unit 11 to approximate solids. Consider the
image in Fig 12.2. We have 20 wells and 40 electrons, so the first 20 states are occupied.
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In the energy units used here, one can read off the graph that creating an excited state
would require a little under 0.04 fake units. Suppose we removed two electrons from
this system, so that the highest state is unoccupied. In that case, it would take only a very
small amount of energy to create an excited state. We call the smallest energy that it takes
to create an excited state the gap. In summary,
Number of electrons Gap

20 ∼ 0.04
18 ∼ 0.00

The gap of a material determines what light it can absorb and emit, just like in the
simpler cases we saw earlier in quantum mechanics. This is determined by what energy
levels are available in the quantum system and how many electrons are present. While it
may be difficult to determine the energy levels from first principles, once those are known
either from experiment or calculation, once that is done, we can predict the interaction
of matter with light using these levels.

Some examples:

• Silicon dioxide glass, which is used in windows, has a large gap of almost 9 eV for
the electrons. The smallest wavelength we can see has photons of around 3.1 eV, so
glass cannot absorb them.2

• Aluminum metal has zero gap, which means that it absorbs and transmits light
very well. It is so effective at this that it is used for mirrors.

• Silicon transistors have their gap modified by adding and removing dopants, such
as boron and nitrogen, which have more or less electrons than the silicon atom. This
is the effect that allows transistors to work.

Metals, insulators, and semiconductors

The gap of materials also has to do with conductivity. One way of looking at this is that
in order for a material to conduct electricity, it must be easy to add and remove electrons
from the material.

To help visualize this, imagine two pieces of aluminum which are placed next to one
another, and we would like to move an electron from one piece to another. This is an
excited state, but the energy of that excited state is very close to the energy of the ground
state, since there are many unoccupied and occupied states in the same energy range.

On the other hand, consider two pieces of glass (with a gap of 9 eV) next to one an-
other. Removing an electron from one piece and adding it to another results in a state
with energy around 9 eV higher than the ground state. That means that a fairly large
barrier must be overcome for every electron that is to be moved. Glass therefore does
not conduct electricity very well, unless a huge electric field is put on it, and is called an
insulator.

Finally, let’s consider silicon, which has a gap of only ∼ 1 eV. The energy barrier to
moving electrons is quite a bit smaller than in glass, but much larger than in aluminum.

2Silicon dioxide glass does absorb in the infrared due to vibrations, but not due to the electrons.
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It is small enough that temperature can push the electrons over the barrier and so silicon
is called a semiconductor. When we apply an electric field some electrons move due to
the temperature, but not nearly as many as metals.



Useful equations

Physical constants

speed of light c 2.998×108 m/s
Planck constant h 6.626 × 10−34 J s

4.135 × 10−15 eV s
~ 1.054 × 10−34 J s

0.658 × 10−15 eV s
electron volt eV 1.602 × 10−19 J
electron charge e 1.602 × 10−19 C
Bohr radius a0 0.05292 nm
electron mass me 9.109 × 10−31 kg

0.511 MeV/c2

proton mass mp 1.673 × 10−27 kg
938.3 MeV/c2

neutron mass mn 1.675 × 10−27kg
939.6 MeV/c2

hydrogen mass mH 1.674 × 10−27 kg

Trigonometric identities

cosα + cosβ = 2cos
(α − β

2

)
cos

(α + β
2

)
cos2α + sin2α = 1

A2 +B2 + 2ABcosφ = C2

Complex numbers

i =
√
−1

eiθ = cos(θ) + i sin(θ)
z = x+ iy
z∗ = x − iy

|z|2 = zz∗ = x2 + y2

Waves

Symbol Name SI units
k Wave number m−1

λ Wavelength m
ω Angular frequency rad/s
φ Phase radians
T Period s
f Frequency s−1

I Intensity W/m2

A Amplitude
√

W/m2

f =ω/2π = 1/T
k = 2π/λ

Iavg =
|A|2

2

Intensity of superposition of two waves
of equal magnitude

Itotal = 2A2 cos2
(
kr1 +φ1 − kr2 −φ2

2

)

Diffraction

asinθ0 = λ
D sinθ0 = 1.22λ

Photons

p = ~k = h/λ
E = hf = ~ω



USEFUL EQUATIONS

Wave functions

ρ(x, t) = Ψ (x, t)Ψ ∗(x, t)

P (a < x < b) =
∫ b

a
ρ(x, t)dx∫ ∞

−∞
ρ(x, t)dx = 1

Polarization

Polarization direction State
Vertical Ψv
Horizontal Ψh
Diagonal (45 degrees) 1√

2
(Ψh +Ψv)

Diagonal (-45 degrees) 1√
2
(Ψh −Ψv)

Circular (right-handed) 1√
2
(Ψh + iΨv)

Circular (left-handed) 1√
2
(Ψh − iΨv)

Measurement rule

Ψ = aΨ1 + bΨ2

P (1) =
|a|2

|a|2 + |b|2

Quantum matter

Wave function of momentum p

Ψ (x) = Aeikx

p = ~k

Heisenberg Uncertainty Principle

∆x∆p ≥ ~/2

Schrödinger equation

− ~
2

2m
d2Ψ (x)
dx2 +U (x)Ψ (x) = EΨ (x)

Infinite square well eigenstates

Ψn(x) =


√

2
L sin(nπxL ) if 0 < x < L

0 otherwise,

En =
~

2n2π2

2mL2

Harmonic oscillator

Ground state

Ψ0(x) = Ae−αx
2

α =
1

2~

√
mk

E =
~

2α
m

=
~

2m

√
mk

Spectrum

En =
(
n+

1
2

)
~ω,n = 0,1,2, . . .

Time dependent Schrödinger
equation

i~
∂Ψ (x, t)
∂t

= − ~
2

2m
∂2Ψ (x, t)
∂x2 +U (x)Ψ (x, t)

Time dependence of energy eigenstates

Ψ (x, t) = e−iωntΨn(x)
En = ~ωn

Double wells

∆E = Ce−κ
√
mVL,
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