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Lecture 4: 
Diffraction & Spectroscopy 

y 
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Spectra of atoms reveal the  

quantum nature of matter  

Take a plastic grating from the bin as you enter class. 
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Today’s Topics 

* Derivations in Appendix   
  (also in Young and Freeman, 36.2 and 36.4) 

 Single-Slit Diffraction* 

 Multiple-slit Interference* 

 Diffraction Gratings 

 Spectral Resolution 

 Optical Spectroscopy  

 Interference + Diffraction  
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Review of 2-Slit Interference 

• Only the phase difference matters. 

Phase difference is due to source phases and/or path difference. 

• In a more complicated geometry (see figure on right), 

one must calculate the total path from source to screen. 

• If the amplitudes are equal  Use trig identity: A = 2A1cos(f/2). 

• Phasors:  Phasors are amplitudes. 

Intensity is the square of the phasor length. 
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Multiple Slit Interference 

The positions of the principal maxima occur at f = 0, 2p, 4p, ...  

where f is the phase between adjacent slits. q = 0, l/d, 2l/d, ...   

 

The intensity at the peak of a principal maximum goes as N2. 

3 slits: Atot = 3A1  Itot = 9I1.  N slits: IN = N2I1. 

 

Between two principal maxima there are N-1 zeros and  

N-2 secondary maxima  The peak width  1/N. 

 

The total power in a principal maximum is proportional to N2(1/N) = N. 
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N-Slit Interference  

The Intensity for N equally spaced slits is given by: 

 

 

 

 Derivation (using phasors) is  

 in the supplementary slides. 
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* Your calculator can probably graph this.  Give it a try.  
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f is the phase difference between adjacent slits. 

 

You will not be able to use the small angle approximations unless d >> l. 

As usual, to determine the pattern at the screen,  

we need to relate f to q or y = L tanq: 

dsin d
    and   

2

y

L

f  q q
q

p l l l
   



Lecture 4, p 6 

Example Problem 

0  qmin              l/d                              q 

In an N-slit interference pattern, at what angle qmin does the  

intensity first go to zero?    (In terms of l, d and N). 
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Solution 

0  qmin              l/d                              q 

In an N-slit interference pattern, at what angle qmin does the  

intensity first go to zero?    (In terms of l, d and N). 

But fmin = 2p(d sinqmin)/l  2pd qmin/l = 2p/N.      Therefore, qmin  l/Nd. 

 

As the number of illuminated slits increases, the peak widths decrease! 

General feature: Wider slit features  narrower patterns 

  Narrower slit features  wider patterns.... 
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has a zero when the numerator is zero.  That is, fmin = 2p/N. 

Exception: When the denominator is also zero. 

 That‟s why there are only N-1 zeros. 
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Q: What happens when a plane wave meets a small aperture? 

A: The result depends on the ratio of the wavelength l to the size  
of  the aperture, a:  

Huygens’ principle 
A Consequence of Superposition  

l >> a 
Similar to a wave from a point source. 

This effect is called diffraction. 

l << a 

The transmitted wave is concentrated in the 

forward direction, and at near distances the 

wave fronts have the shape of the aperture.  

The wave eventually spreads out. 

We will next study what happens when waves pass through 

one slit.  We will use Huygens‟ principle (1678): 

All points on a wave front (e.g., crest or trough) can be treated 

as point sources of secondary waves with speed, frequency, 

and phase equal to the initial wave. 

Wavefront at  
      t=0 

Wavefront at 
later time 
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So far in the multiple-slit interference problems we have assumed that each 

slit is a point source. 

Point sources radiate equally in all directions. 

Real slits have a non-zero extent – - a “slit width” a.   

The transmission pattern depends on the ratio of a to l.  

In general, the smaller the slit width, the more the wave will diffract. 

screen 

Diffraction 
profile 

I1 

Large slit: 

Single-slit Diffraction 

screen 

Diffraction 
profile 

I1 

Small slit: 



Single-Slit Diffraction 
Slit of width a. Where are the minima? 
 

Use Huygens‟ principle: treat each point 
across the opening of the slit as a wave 
source. 
 

The first minimum is at an angle such 
that the light from the top and the 
middle of the slit destructively interfere. 
 

This works, because for every point in 
the top half, there is a corresponding 
point in the bottom half that cancels it. 
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ACT 1 

Which of the following would broaden the diffraction peak? 

 

 a. reduce the laser wavelength 

 b. reduce the slit width 

 c. move the screen further away 

 d. a. and b.  

 e. b. and c. 

 

2 m 

a 1 cm  = W 
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ACT 1 - Solution 

Which of the following would broaden the diffraction peak? 

 

 a. reduce the laser wavelength 

 b. reduce the slit width 

 c. move the screen further away 

 d. a. and b.  

 e. b. and c. 

2 m 

a 1 cm  = W 
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Laboratory 1:  Interference 

In this week‟s lab you will combine: 

 

 Two slits: 

Multi-slit Interference I = 4I1cos2(f/2)   

 For point sources, I1 = constant. 

and 

 

Single-slit Diffraction        I1(q) 

 For finite sources, I1 = I1(q). 

to obtain 

 

The total pattern, I = 4I1(q)cos2(f/2) 

 

Don‟t forget …  The prelab is due at the beginning of lab !! 
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Single-slit Diffraction — Summary 

The intensity of a single slit has the following form: 

Single Slit Diffraction Features:  

First zero: b = 2p    q  l/a  

Secondary maxima are quite small.  
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b = phase difference between waves coming from the top and bottom of the slit. 

Derivation is in  

the supplement. 
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Multi-Slit Interference + Diffraction 

Combine: 

Multi-slit Interference,   

         

                 and 
 

Single-slit Diffraction,       
               

           to obtain 

 

Total Interference Pattern,   

 

Remember: f/2p  /l = (d sinq)/l  dq/l           

       b/2p  a/l = (a sinq)/l  a q/l  
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f = phase between adjacent slits 

b = phase across one slit  

  You will explore these concepts in lab this week. 



Note:The simple calculations we have done only hold in 
the “far-field” (a.k.a. “Fraunhofer” limit),  
 where L >> d2/l. 
Intermediate cases (“Fresnel diffraction”)  can be much 
 more complex… 
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Interference Gratings 

Examples around us.   

CD disk – grooves spaced by ~wavelength of visible light.   

The color of some butterfly wings!   

The material in the wing in not pigmented! 

 

The color comes from interference of  

the reflected light from the pattern of 

scales on the wing– a grating with spacing 

of order the wavelength of visible light!   

 

(See the text Young & Freeman, 36.5) 



Lecture 4, p 18 

Optical spectroscopy:  
a major window on the world 

Some foreshadowing: 

Quantum mechanics  discrete energy levels, 

e.g., of electrons in atoms or molecules.   

When an atom transitions between energy levels it emits light of a very 

particular frequency. 

Every substance has its own signature of what colors it can emit. 

By measuring the colors, we can determine the substance, as well as 

things about its surroundings (e.g., temperature, magnetic fields), whether 

its moving (via the Doppler effect), etc. 

Optical spectroscopy is invaluable in materials research, engineering, 

chemistry, biology, medicine… 

But how do we precisely measure wavelengths? 
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Spectroscopy Demonstration 
We have set up some discharge tubes with various gases.  Notice that 

the colors of the various discharges are quite different.  In fact the light 

emitted from the highly excited gases is composed of many “discrete 

wavelengths.”  You can see this with the plastic “grating” we supplied. 

Your eye 

Hold grating less than 1 inch from your eye. 

Light source 

Your view through 

the grating: 

Put light source at 

left side of grating. 

View spectral lines by 

looking at about 45o.  If 

you don‟t see anything, 

rotate grating 90o. 
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Atomic Spectroscopy 
Figure showing examples of atomic spectra for H, Hg, and Ne. 

Can you see these lines in the demonstration?  

You can keep the grating. See if you can see the atomic 

lines in Hg or Na street lights or neon signs. 

Source for figure:  

http://www.physics.uc.edu/~sitko/CollegePhysicsIII/28-AtomicPhysics/AtomicPhysics.htm 

The lines are explained by Quantum Mechanics. 
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 The slit/line spacing determines the location of the peaks (and the 

angular dispersing power ql of the grating: 
 

The positions of the principal interference maxima  

are the same for any number of slits! 

 The number of slits/beam size determines the width of the peaks 

(narrower peaks easier to resolve). 

      q  l/Nd 

Resolving power of an N-slit grating:  The Rayleigh criterion 

 

Diffraction from gratings 
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Diffraction Grating Example 

Angular splitting of the Sodium doublet: 

Consider the two closely spaced spectral (yellow) lines of sodium (Na),  

l1 = 589 nm and l2 = 589.6 nm.  If light from a sodium lamp fully 

illuminates a diffraction grating with 4000 slits/cm, what is the angular 

separation of these two lines in the second-order (m=2) spectrum? 

Hint:  First find the slit spacing d from the number of slits per centimeter.  
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41cm
2.5 10 2.5

4000
d cm m-   

1 1
1 sin  = 28.112  m

d

l
q -  

  
 

1 12 1sin sin 0.031m m
d d

l l
q - -   

  -     
   

Small angle approximation  

is not valid. 

Angular splitting of the Sodium doublet: 

Consider the two closely spaced spectral (yellow) lines of sodium (Na),  

l1 = 589 nm and l2 = 589.6 nm.  If light from a sodium lamp fully 

illuminates a diffraction grating with 4000 slits/cm, what is the angular 

separation of these two lines in the second-order (m=2) spectrum? 

Hint:  First find the slit spacing d from the number of slits per centimeter.  

Solution 
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Diffraction Gratings (1) 
Diffraction gratings rely on N-slit interference.   

They consist of a large number of evenly spaced parallel slits. 

An important question: 

How effective are diffraction gratings at resolving light of different 

wavelengths (i.e. separating closely-spaced „spectral lines‟)? 

IN = N2I1 

0          l1/d                    sin q 

 0                l2/d                sin q 

l1 

 

l2 

sinq depends on l. 

Example: Na has a spectrum with two yellow “lines” very  

close together: l1 = 589.0 nm, l2 = 589.6 nm    (l = 0.6 nm) 

Are these two lines distinguishable using a particular grating? 

We need a “resolution criterion”. 
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Diffraction Gratings (2) 
We use Rayleigh‟s criterion: 

The minimum wavelength separation we can resolve occurs  

when the l2 peak coincides with the first zero of the l1 peak: 

 

So, the Raleigh criterion is (sinq)min = l/Nd. 

However, the location of the peak is sinq = ml/d. 

Thus, (l)min = (d/m)(sinq)min = l/mN: 

 

Comments: 

 It pays to use a grating that has a large number of lines, N. 

 However, one must illuminate them all to get this benefit. 

 It also pays to work at higher order (larger m):  The widths of  

 the peaks don‟t depend on m, but they are farther apart at large m. 

   

sinq 
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0 l/d 2l/d 3l/d  sin q  

 First order Second order Third order 

 m = 1 m = 2 m = 3 
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Supplementary Slides 
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Multi-Slit Interference 

We already saw (slide 4) that the positions of the 
principal maxima are independent of the number 
of slits.  Here, we will use phasors to determine 
the intensity as a function of q. 

 

 

At each principal maximum (d sinq = ml), the slits 
are all in phase, and the phasor diagram looks like 
this: 
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Atot = N A1    Itot = N2 I1 

A1 A1 A1 

For other values of q, the phasors are rotated,  

each by an angle f with respect to its neighbors. 

Remember that f/2p = /l = d/l sinq. 

We can calculate Atot geometrically (next slide).  
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Multi-Slit Interference (2) 

The intensity for N equally spaced slits is found from phasor analysis. 

Draw normal lines bisecting the phasors. They intersect, defining R as shown: 
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Single-slit Diffraction 
To analyze diffraction, we treat it as interference of 
light from many sources (i.e., the Huygens wavelets 
that originate from each point in the slit opening). 

 

Model the single slit as M point sources with spacing 
between the sources of a/M.  We will let M go to 
infinity on the next slide. 

 

The phase difference b between first and last source 

is given by b/2p  a/l = a sinq / l  aq/l . 

Destructive interference occurs  

when the polygon is closed (b = 2p): 
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Destructive Interference 
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We have turned the single-slit problem into the M-slit  
problem that we already solved in this lecture. 

However, as we let M  , the problem becomes much  
simpler because the polygon becomes the arc of a circle. 

The radius of the circle is determined by the relation  
between angle and arc length: b = Ao/R. 
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You can graph this function I = A2:     

Remember: b/2p  a/l = (a sinq)/l  a q/l  

 b = angle between 1st and last phasor  
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Trigonometry:        A1/2 = R sin(b/2) 

With R = Ao/b: 
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Single-slit Diffraction (2) 


