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Unit 10: The Line Element and Grad, Div, Curl 
 
Section 10.1: Two More Basic Pieces 
 
Our first task today is to cover some pieces of multidimensional or calculus-related math that we 
use all the time in physics but tend to fall through the cracks between your math and physics 
courses.  Homework 9 started this “Basic Pieces” collection with two vector-handling skills: 
 
Piece #0: Vector Magnitudes & Dot Products 
 
                                     Tools for Dot Products,    distribute the dot      geometry → A B cosθ 
                                        esp of vector sums:  orthonormal components → A

i
B
i

i

! & Pythagoras 

 
Piece #1: Expressing Vectors in Component Form 
 

                        for any complete, orthonormal set of unit vectors r̂
1
,!r̂

2
,!r̂

3
 

 
 

… and now, the new stuff … 
 
Piece #2: Playing with Differentials 
 
Today’s two basic pieces are related to calculus rather than geometry.  
Check the clock: spend no more than 6 minutes total on the following 2 questions, ok?  Here we go: 
 
(a)  In upper-level physics texts, kinetic energy is referred to as T (not KE).  In Physics 325, you’ll 
see a relation like this, written without comment: dT = mvdv .  Where does this come from?  
Any idea?  Hint: this would be in the non-relativistic part of 325.   
 
 
 
 
(b)  Now try this one, which I grabbed at random (in a slightly simplified, i.e., 1D form) from 
Taylor’s mechanics text:  A particle of mass m moves in the x direction under the influence of a 
force F that also points in the x direction.  A useful relation for this system is dT = Fdx .  Can you 
derive that?  Start with the relation dT = mvdv  from (b), even if you didn’t manage to derive it.  
 

  

   

!
v =

!
v !
!
v

 

!
v = (

!
v ! r̂

i

i=1

3

" )!r̂
i
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Success?  Here are the derivations, please read them carefully: 
 

 for (a):  T =
1

2
mv

2   →  
dT

dv
= mv   →  dT = mvdv  

 for (b): dT = mvdv = mvdv!
dt

dt
  … now rearrange → dT = m

dv

dt
(vdt) = ma (dx) = Fdx  

 
Hold. The. Phone.  Is this legal??  We are merrily rearranging differentials like dx and dt just like 
they were normal variables.  Don’t differentials appear in derivatives only?  Can we really break up 
a derivative like v = dx / dt  and start playing around with dx and dt on their own?  
 
Yep!  In physics that is.  And there’s a good reason for it: physics is smooth.  In the large majority 
of situations, the functions we work with in physics are well-behaved, continuous functions because 
nature is generally well-behaved and continuous.  Also, remember what a derivative is: 
x '(t) = dx / dt  is just a ratio.  It’s the ratio !x / !t , run to the limit where both !x  and !t  are 
vanishingly small.  Since you can take that limit at any time, go ahead and treat differentials df 
exactly like finite numbers Δf while you are doing your calculation.  When you’re done with your 
algebra, mentally turn all the Δ’s back into d’s and take the limit that they’re infinitesimally small. 
 
Here’s Piece #2 in a box, for reference:      
 

df

dx
= g   is equivalent to  df = gdx       as long as the functions f and g are smooth 

 
In words: As functions of physical interest are almost always smooth (continuous), you can treat 
infinitesimal differentials df like finite numbers Δf →  you can manipulate them algebraically as you 
like – rearrange, regroup, etc – then mentally return them to d’s and derivatives when you’re done.  
 
(c)  A particle moves along the x-axis with a position-dependent acceleration a(x) = Cx, where C is 
a constant with the appropriate units.  At time t = 0 the particle is at rest at position x = 0.   
Calculate v(x) = the particle’s velocity as a function of position.  

TACTICS: The second bullet at the top of the page shows a key trick in the “playing with 
differentials” game → We had a differential dv that we didn’t want in our answer …  to get rid of it, 
we multiplied by dt / dt (which is 1, so nothing changes), then regrouped the differentials into 
new derivatives (e.g. dv / dt) corresponding to quantities we did want (dv / dt = acceleration a).  
Tactic summary: Multiply by d<blah> / d<blah>, then regroup.  Apply this trick to solve part (c)! 

  
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Self-check! The answer is v(x) = C x .  If that’s not what you got, give it another try. 
 
Piece #3: The 3D Chain Rule 
 

df (x
1
,..., xn ) =

!f

!xi
!dxi

i=1

n

"      where the variables x1,…,xn are all independent 

 
In words: The change df that occurs in a function f when the independent coordinates xi on which it 
depends are changed by amounts dxi is just sum of each change dxi times the relevant slope !f / !xi .  
 
(d)  This one is best explained by going straight to an example.  A section of a particle accelerator is 
occupied by an electric field that produces an electric potential !(x, y, z) = Ax + Bxy + Czy , where 
A, B, and C are constants with appropriate units.  (Phi for potential?? See1)  A proton is sent through 
the accelerator along a specific trajectory: the proton is confined to the plane y = 2 and its speed is 

 

!
v(t) = v

x
(t)! x̂ +!v

z
(t)! ẑ , where vx(t) and vz(t) are known functions of time.  Calculate φ(t) = the 

electric potential seen by the proton as a function of time.  Your answer will be an integral over 
time, with the functions vx(t) and vz(t) in the integrand.  (It will be an integral that you could do if 
you knew those functions.) If you’re really stuck after a couple of minutes, hints are below2.  
 
 
 
 
 
 
 
 
 
 
 
Back to the 5 Keys of Vector Calculus  
 
With those tools in hand, we can now return to our study of 3D calculus and its use with the 
Cartesian, spherical, and cylindrical coordinate systems.  Our roadmap is to cover in turn the five 
key elements of all coordinate system.  We did keys 1,2,3 in Unit 9 and Lecture 10 … onwards! 
 

1. The Definitions of ri:  the transformation equations to/from Cartesian coordinates xi  
2. The Unit Vectors r̂

i
: they’re position-dependent in curvilinear coordinate systems! 

3. The Position Vector  
!
r : driving directions to the spacepoint with coordinates (r1,r2,r3) 

4. The Line Element  d
!
l : turning coordinates into distances 

5. The Gradient  
!
!  and the other 3D differential operators, div and curl 

                                                
1 We’re using φ for electric potential instead of V to avoid confusion with velocity v.  I know φ makes you think of an 
angle, but it is actually used for potential quite often in advanced texts. 
2  Hint 1: Start by applying the 3D chain rule to the scalar field V(x,y,z) and see what that gives you.   
   Hint 2: We need to get time involved → use the “multiply by d<blah> / d<blah>” tactic from Basic Piece #2!  

  
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Section 10.2: The Fourth Key →  The Line Element  d
!
l  

 
The line element  d

!
l , also called the infinitesimal displacement vector, is defined as follows:   

 
The line element  d

!
l  tells you how far and in which direction you move when you start at  

a point (r1,r2,r3) of your coordinate system then shift all your coordinates ri by a little bit dri. 
 
 
Here is the Cartesian line element:         

 
d
!
l = dx! x̂ + dy! ŷ + dz! ẑ  

In words:  
“If you move from some point (x, y, z)  to the point (x + dx,!y + dy,!z + dz) ,  

your spatial displacement is 
 
d
!
l = dx! x̂ + dy! ŷ + dz! ẑ .”   

 
Remember the position vector  

!
r  (the Third Key)?  It provides driving directions from the origin to 

the point (r
1
,r
2
,r
3
)  of your coordinate system.  The line element provides driving directions for 

changes in your coordinates (dr
1
,dr

2
,dr

3
) .  Then why on earth are we calling it  d

!
l  instead of  d

!
r ?  

This is important:  
 d
!
l  is  d

!
r ,       in every sense. 

 
The symbol  d

!
l  is chosen because it avoids the overused letter r, which would cause us serious 

notational trouble in about 20 seconds.   
 
We must find the spherical & cylindrical line elements.  They all have this form:  

In words: the line element’s components dli specify the 
 distance you travel when you change coordinate i by dri     (from ri to ri + dri). 

We’ll figure out these dli geometrically.  Key point: in general, dli is not dri.  The vector  d
!
l  does 

mean “ d
!
r ” = differential change in position. However, its components dli are physical distances 

while the symbols dri are coordinate changes, and not all coordinates have units of distance. 
 
(a)  Using geometry, fill in the blanks to complete the spherical and cylindrical line elements.  

 Spherical:   
 
d
!
l = ______!dr !r̂ !!+!!______!d! !!̂ !!+!!______!d" !"̂  

 Cylindrical: 
 
d
!
l = ______!ds! ŝ !!+!!______!d! !!̂ !!+!!______!dz! ẑ  

4 

 

!
r = r r̂

z 

y 

x 

r 

φ 

θ 

z 

y 

x 

z 

φ 

 

!
r = s ŝ + z ẑ

s 

 

d
!
l = dl

i
!r̂
i

i=1

3

!
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(b)  The terms “____ dri”  in those expressions are precisely dli : the components of the line 
element.  It’s very important that you got the correct values!  Please run through these checks:  

 Here are the answers for the first two terms:  dlr = dr  and dlθ = r dθ.  Is that what you got?  
 If you got a different result for dlθ, ponder the correct answer r dθ … then look back at the 

picture and think about the concept of arc length.  Does it make sense now?   
 The “____” prefactors for dlθ and dlφ are not the same; is that what you found?   
 Try the limiting cases θ = 0 and θ = π/2.  Do your answers make sense at these angles?  

 
If any of these checks fail, revise your answers to (a) as necessary … we’re gonna need them! 
 
Section 10.3: The Fifth Key → The Gradient  

!
!  and its 3D friends Div and Curl 

 
(a)  The fundamental differential operator in 3D is the gradient  

!
! .  Do you recall its physical 

significance?  When you apply it to a scalar field 
 
V (
!
r ) , what does it tell us about that field? 

 The direction of  
!
!V , evaluated at any point  

!
r , tells us the __________________________ 

            of V at the point  
!
r . 

 The magnitude of  
!
!V , evaluated at any point  

!
r , tells us the _________________________ 

            of V at the point  
!
r . 

 
In Cartesian coordinates, the gradient operator is: 
 
(b)  Now suppose your scalar field is expressed in  
spherical coordinates: V(r,θ,φ).  How do we calculate  

!
!V ?   

Here is what everyone guesses at first: if the Cartesian gradient is what’s in the box above, then the 

spherical gradient must be     
 

!
!V = r̂ !

"V

"r
+ #̂ !

"V

"#
+ $̂ !

"V

"$
.      Right … … … … ?  

Take a hard look at this “obvious” expression.  Do you see why it cannot possibly be correct?  
 
 
 
 
(c)  The gradient is the 3D version of “slope”.  Here is a symbolic representation of th ith component 

of that slope: 
 

(
!
!V )

i
= lim

"xi#0

"V

"l
i

 , where Δli is the distance you travel when you change the 

coordinate ri by an amount Δri.  That’s what a slope is: the change in a function divided by the 
change in position that produced it.  With your new knowledge about the line element, can you 
figure out the correct form of the gradient in both spherical and cylindrical coordinates? 
 
 
 

 

!
! = x̂

"

"x
+ ŷ

"

"y
+ ẑ

"

"z

5 
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Drum roll … the correct gradient formulas are: 
 

 

!
! = r̂ !

"

"r
+
#̂

r
!
"

"#
+

$̂

r sin#

"

"$
                       

 

!
! = ŝ !

"

"s
+
#̂

s
!
"

"#
+ ẑ !

"

"z
 

 
Time to put Keys 4 and 5 together.  Here are the correct answers for the line elements in spherical 
and cylindrical coordinates: 
 

 
d
!
l = dr !r̂ !+!r !d! !!̂ !+!r sin! !d" !"̂                  

 
d
!
l = ds! ŝ !+!s!d! !!̂ !+!dz! ẑ  

 
Did you get them correct too?  And do you see how they work together? → The three components 
of the line element are exactly the spatial displacements you need to make a 3D slope, so they 
provide the denominators of the gradient operator.   
 
Discussion: It’s crucial that all four of the above formulae make complete intuitive sense to you.  
If you’re the slightest bit unclear about the utter obviousness of these four expressions, ask!!!  
 
Two weeks ago, you learned the most common physics application of the gradient: obtaining the 
force 

 

!
F(
!
r )  on an object at a location  

!
r  from its potential energy map 

 
U(
!
r ) :  
!
F = !

!
"U .  Dividing 

both sides of this relation by the charge q on a test charge, we get the relation between electric field 
and electric potential:  

!
E = !

!
"V .   

 
(c)  In Physics 212, you learn that the electric potential caused by a point charge q located at the 
origin is 

 
V (
!
r ) = kq / r .  Using the gradient in spherical coordinates, obtain the electric field due to 

this point charge.  Piece of cake! 
 
 
 
 
 
 
 
That’s it for the gradient!  On the next page, we’ll be taking partial derivatives of vector fields, to 
construct two more differential operations.  It’s crucial that you realize what a vector field is: it is 
three scalar fields — one for each component — that are each multiplied by a unit vector, then 
added together.  In Cartesian, e.g., a vector field is written like this: 

 

!
E(x, y, z)!!=!!E

x
(x, y, z)! x̂!+!E

y
(x, y, z)! ŷ!+!E

z
(x, y, z)! ẑ  

When we take partial derivatives of  
!
E  we’ll have to consider ! / !x , ! / !y , and ! / !z  of each 

component Ex, Ey, and Ez  → that’s 9 partial derivatives in all. At this point, you might appreciate 
some shorthand notation: !x f  is often used as shorthand for !f / !x .  Instead of considering all 9 
partials !iE j  independently, we’ll work with them in two groups: 3 of them will appear in an 

operation we call the divergence  
!
! "
!
E  and the other 6 will appear in the curl  

!
! "
!
E .  You’ll see! 
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The divergence of a vector field  
!
E  is obtained by taking the dot product of the gradient operator 

and the field:  
!
! "
!
E .  In Cartesian coordinates, we have 

 

!
! "
!
E !=! x̂

#
#x

+ ŷ
#
#y

+ ẑ
#
#z

$
%&

'
()
!i! E

x
x̂ + E

y
ŷ + E

z
ẑ( )!!=!!

#E
x

#x
+
#E

y

#y
+
#E

z

#z
 

In our slick shorthand notation, the formula is nice and compact:    
 

!
! "
!
E = #

x
E
x
+ #

y
E
y
+ #

z
E
z  

Like any dot product, the divergence produces a scalar result.   
 
(d)  Calculate the divergence  

!
! "
!
E  of this vector field: 

 

!
E(x, y)!=!y

2
x̂!+!2xy ŷ + z

2
ẑ . 

 
 
 
 
On to spherical coordinates!  In this system we express our field via its r, θ, and φ components:  

 

!
E !!=!!E

r
r̂ !+!E! !̂ !+!E" "̂ , 

where each component Ei is a separate function of (r, θ, φ).   Before we get to the divergence, let’s 
make sure we know what such an expression means: let’s write some familiar fields in this notation. 
 
The Physics 212 formula sheet has several electric and magnetic fields, created by charge and 
current distributions that have sufficiently high symmetry to be calculated using Gauss’ Law or 
Ampere’s Law in integral form.  Here are five of them: 

E =
q

4!"
0
r
2

                 E =
!

2"
0

                E =
!

2"#
0
r

              B =
µ
0
I

2!r
              B = µ

0
nI  

(e)  Oh dear!  These are only magnitudes … and the variable “r” is being horribly abused, meaning 
different things in different formulae!  → Fix up the five familiar3 fields above with a good choice 
of  coordinate system and with unit vectors to turn them into proper vector fields 

 

!
E(
!
r )  or 

 

!
B(
!
r ) .   

 
(f)  Now for the divergence in spherical coordinates.  Based on the Cartesian example at the top of 
the page and your knowledge of the gradient in spherical coordinates, take your best guess for what 

 

!
! "
!
E  is in terms of the partial derivatives !

r
,!!" ,!!#  of the components Er, Eθ, Eφ.  

 
 
 

                                                
3  Not so familiar any more?  The 5 fields refer to (not in order): an infinite wire, and infinite line of charge, an infinite 
sheet of charge, a charged sphere or point, and an infinitely long solenoid.  I’m sure you can spot which is which. 
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Check out the correct formula:  
 

 

!
! "
!
E =

1

r
2

#

#r
(r
2
E
r
) +

1

r sin$

#

#$
(sin$ !E$ ) +

1

r sin$

#E%

#%
 

 
!!!!!???  How can this be?  The gradient is just a dot-product of two vectors ... where did those 
additional r2 and sinθ factors come from??  I bet you have already figured out the reason: the 
spherical unit vectors we used to write 

 

!
E = E

r
r̂ + E!!̂ + E""̂  are position-dependent, and therefore 

have derivatives.  You see the problem?  The derivatives in the gradient operator must be applied to 
both the field components Ei and the unit vectors!  Aieee …  
 
Mastery:  You  have all the skills necessary to derive the bizarre-looking formula above.  On this 
week’s homework, you’ll derive the divergence formula in cylindrical coordinates, which requires 
the same procedure but is a bit shorter.  I urge you to try it out for the spherical formula as well 
some time!  When you succeed, you will truly be a grand master of 3D vector calculus.   
 
 
 
The third differential operation of 3D calculus is the curl.  It is also formed by applying the gradient 
operator to a vector field, but this time using a cross-product instead of a dot product →  

!
! "
!
E .  

As with  
!
! "
!
E , the component-by-component form of the curl in Cartesian coordinates is exactly 

what you’d expect, while in spherical and cylindrical coordinates it’s a giant mess.  In fact, it’s a 
longer mess: the curl produces a vector result, which means three components.  You can derive 
these expressions in the same way as indicated above — using the derivatives of the unit vectors, 
which you now know how to obtain —  but there are slicker ways to obtain their forms.  We’ll 
come to those, and to the physical significance of the divergence and curl, in the coming week. 
 
The most important thing to take away from this page is the following: 
 
 

Div and curl in spherical & cylindrical coordinates are not obvious  
 
 
In this one and only one case, my advice to you is never guess, always look them up. 
 
If you flip to the back page of the unit, you will find a tear-off sheet → our master formula sheet for 
3D calculus.  Have a look: you’ll find grad, div, curl, the line element, the derivatives of the unit 
vectors, and more.  We haven’t derived everything on there yet, but we’re getting very close! 
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Section 10.4: Velocity in Spherical & Cylindrical Coordinates 
 
Here’s a great exercise to develop your mastery of 3D calculus: calculate the velocity  

!
v = d

!
r / dt  of 

a moving particle in spherical coordinates. This formula appears on the Physics 325 formula sheet 
without derivation → perfect example of the purpose of this course.  With the particle’s path 
described in spherical coordinates by the functions r(t), θ(t), and φ(t), its velocity is:   

 

!
v !!!
!
"r !=! "r r̂ !+!r "" "̂ !+!r sin" "# #̂ . 

No box around this one → you’re going to derive it!  In this expression, we’ve introduced  
dot-notation: a dot over a function denotes its time derivative.  It’s very useful shorthand in 
mechanics where most of the derivatives of interest are time derivatives. 
 
There are multiple ways to derive this relation, and they’re all instructive.  You’ll need several 
formulas from our growing collection (e.g. unit vector definitions and derivatives), so tear off the 
back page: they’re all there.  You may also need to consult the Basic Pieces from this unit’s intro. 
 
(a)  The first derivation is the faster one, and definitely the one to use if you don’t have a formula 
sheet handy.  Think about the meaning of velocity: it’s change in position over change in time.  
“Change in position” makes us think of the line element, doesn’t it?  Figure out how to use the line 
element to construct the velocity vector.  If you’ve mastered those Basic Pieces, this derivation is 
very fast.  Go go go! 
 
 
 
 
 
 
(b)  The second derivation is more formal: start from the definition  

!
v = d

!
r / dt  and calculate that 

time derivative explicitly.  You’ll need to put in something sensible for the  
!
r  in the numerator4, you 

must remember how spherical unit vectors behave5, and you’ll need the 3D chain rule as the 
spherical unit vectors are position-dependent vector fields.  Ready?  Set?  Go!  Derive that formula! 
 
 
 
 
 
 

                                                
4 The Third Key = the position vector! 
5 The Second Key = the unit vectors … many of which are position-dependent and therefore have derivatives.  You’ll 
find all the unit vector derivatives in compact tables on the back page of our 3D calculus formula sheet.  
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(c)  Using any method you like, determine the formula for velocity in cylindrical coordinates. 
 
 
 
 
 
 
 
 
 
 
(d)  Calculate the angular momentum vector 

 

!
L =
!
r !
!
p  in cylindrical coordinates for a moving 

particle of mass m whose path is described by the functions s(t), φ(t), z(t).   
As with your previous answers, this one must be written entirely in terms of the particle’s 
coordinates s, φ, and z and/or their time-derivatives (as well as the particle’s mass m in this case).  
The cylindrical unit vectors will also appear, of course.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(e)  That is one complicated formula!  To understand it, let’s try a simple limiting case: a particle 
moving in a circle of radius a in the plane z = z0 with constant angular velocity ω.  This motion is 
described by the coordinate functions s(t) = a, φ(t) = ω t, z(t) = z0 .  What does your angular 
momentum expression  give you in this special case?  
 
 
 
 
 
(f)  Even for such a simple path, your  

!
L  will have two components.  Can you interpret them?  

To figure out why there are two, ask yourself this question: how could you simplify the particle’s 
path even further to reduce  

!
L  to a single cylindrical component?  

 


