The Procedure for Multidimensional Integration

Definition of the essential word "**PARAMETRIZE**" as used in this context:

Express all quantities that vary over the integral in terms of your integration parameters (IPs) & constants.

1. Parametrize the Region \mathbb{R}^n

- **a.** Pick your coordinate system $r_i = (x, y, z)$ Cartesian, or (r, θ, ϕ) spherical, or (s, ϕ, z) cylind.
- **b.** Pick your *n* integration parameters u_j a.k.a. IPs or "sweeping parameters" that will sweep out the region \mathbb{R}^n . If possible, use one or more of your chosen coordinates r_i .
- c. Describe the *shape* of \mathbb{R} by expressing your coordinates r_i as functions¹ $r_i(u_i)$ of the IPs
- **d.** Describe the *edges* of \mathbb{R} by providing **bounds** on each integration parameter u_j
- 2. <u>Parametrize the Differential $d\mathbb{R}^n$ </u> using your coordinate system's Line Element $d\vec{l}$

Method 1: Visualization	Method 2: Formalism	
$d\mathbb{R}^n = d\vec{l} d\vec{A} dV$ is how much space	Defining $d\vec{l}_u \equiv \frac{\partial \vec{l}}{\partial u} du$,	
(length area volume) you sweep out	ОИ	
when you increase every IP <i>u_j</i> by <i>du_j</i> .	$d\vec{l} = d\vec{l}$	
Figure it out with a sketch and/or the line	path u	
element $d\vec{l}$ of your coordinate system.	$d\vec{A} = d\vec{l}_u \times d\vec{l}_v$	
This method works best when the integration	$dV = \left(d\vec{l}_u \times d\vec{l}_v\right) \cdot d\vec{l}_w$	
parameters u_i are actual coordinates r_i .		

3. <u>Construct the Integral</u> expressing *everything* in terms of your IPs and constants

Use your coordinate functions $r_i(u_j)$ from to express *everything that varies* in the integrand *entirely* in terms of the IPs and constants. Watch out especially for spher/cylind unit vectors!

Your integral must be **doable** = something you can type into Wolfram Integrator², and must **make sense** = give a result that depends only on quantities that *survive the integration*. (Example of nonsense: a final result with an IP left in it!) Proper integrals have this form:

\mathbb{R}^1 path integral	\mathbb{R}^2 surface integral	\mathbb{R}^3 volume integral
$\int_{u_i}^{u_f} G(u) \ du$	$\int_{v_i}^{v_f} \int_{u_i}^{u_f} G(u,v) du dv$	$\int_{w_i}^{w_f} \int_{v_i}^{v_f} \int_{u_i}^{u_f} G(u,v,w) du dv dw$

For vector integrals, you will get one such scalar integral per component.

¹ What to call these functions $r_i(u_j)$? **Constraint functions** is a good name, as that's what they do: constrain the coordinates to lie on your region \mathbb{R} . I like the descriptive **shape functions**, but we'll go with **coordinate functions**. ² Free integration available online at <u>http://integrals.wolfram.com</u> (indefinite integrals only). The new, insanely powerful WolframAlpha can do definite integrals too \rightarrow see http://wolframalpha.com/examples/Calculus.html

Tips and Tricks for Multi-D Integration

• Choose the <u>coordinate system</u> r_i that best matches the <u>integration region</u> \mathbb{R} , not the integrand.

→ If your integral gives a <u>vector result</u>, you must split it into <u>3 separate integrals</u>, one for each component. (Why? Vectors sum by components, and integrals are just that: sums.)

→ Beware of non-Cartesian unit vectors in your integrand! If \hat{r} , \hat{s} , $\hat{\theta}$, or $\hat{\phi}$ appear in your integrand and are associated with coordinates over which you're integrating, you *cannot* pull them out of the integral because they're *not constant* → transform them to fixed, Cartesian unit vectors before you integrate. The one exception is in field integrals (next point): if \hat{r} , \hat{s} , $\hat{\theta}$, or $\hat{\phi}$ are associated with the *field-point* coordinates rather than the source-point coordinates, they *are* constant over the integral and can be left alone.

To change the <u>direction</u> of a path integral, <u>change the bounds</u>, not $d\vec{l}$. Do not mess with the direction of $d\vec{l}_{path}$: it is tied to your coordinate system and your parametrization of the path by the strict formula $d\vec{l}_{path} = (d\vec{l} / du) du$. In contrast, you are completely free to choose the order of the bounds on your IP, *u*. Final point: if you do *both*, you'll have done *nothing* \rightarrow try it and see!

→ If your integral gives you a <u>field</u> as a result (i.e., a function like $V(\vec{r})$ or $\vec{E}(\vec{r})$) you must be careful to distinguish between **field point** and **source point** coordinates:

The <u>source-point</u> coordinates \vec{r}_q <u>vary</u> over the integral, while the <u>field-point</u> coordinates \vec{r} do <u>not</u> and can be treated as constants.

Be sure to <u>label them differently</u>: use a subscript or prime to identify the source point coordinates in your expressions, and use different symbols on your sketches such as

- for the source point (because it looks like a physical charge ... to me anyway ③)
- \times for the field point (because it reminds me of a treasure map. seriously.)

Always consider the **symmetries** of the system, namely <u>transformations that leave the system</u> <u>unchanged</u>. If a system has such symmetries, then any field it produces or quantity that describes it will *also* be unchanged under those transformations. This allows you to simplify your work in advance! For integrals producing fields, symmetries can <u>restrict the functional dependence</u> of the result. For integrals producing vectors (constant vectors or vector fields), symmetries can <u>restrict the number of components</u> you have to calculate.

→ Be sure to <u>shift</u> and/or <u>rotate your coordinate system</u> in order to match its symmetries to those of your region of integration. Note that the *z*-axis is the axis of symmetry for both the cylindrical and spherical coordinate systems, while the *origin* is the point of symmetry for all coordinate systems. Detail to keep in mind: if you shift/rotate your coordinate system to get a nice description of \mathbb{R} , you must transform your *integrand too*, in the same way.