The Speed of Light \boldsymbol{c} in vacuum is the same for all inertial observers,
independent of the motion of the source.

$$
\beta \equiv \frac{v}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion
- Loss of Simultaneity: events that occur at the same time but different positions in one frame are not simultaneous in another frame

Week 1

Principle of Relativity: The laws of physics are the same in all inertial frames.

The Speed of Light \boldsymbol{c} in vacuum is the same for all inertial observers, independent of the motion of the source.

$$
\beta \equiv \frac{v}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion
- Loss of Simultaneity
- Lattice of Rods \& Clocks: synchronize clocks on grid of rigid rulers \rightarrow how to think about time @ distant location

Lorentz Boosts

- Convention: S^{\prime} moves at speed $v=\beta c$ in $+x$ direction relative to S .
- Inverse: swap $S \leftrightarrow S^{\prime}$ by changing the sign of β.

Week 2

Principle of Relativity: The laws of physics are the same in all inertial frames.

The Speed of Light \boldsymbol{c} in vacuum is the same for all inertial observers, independent of the motion of the source.

$$
\beta \equiv \frac{v}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion
- Loss of Simultaneity
- Lattice of Rods \& Clocks: synchronize clocks on grid of rigid rulers \rightarrow how to think about time @ distant location

Lorentz Boosts

$$
\leftarrow 1-\begin{aligned}
& \Delta t^{\prime}=\gamma(\Delta t-\beta \Delta x / c) \\
& \Delta x^{\prime}=\gamma(\Delta x-\beta \Delta t c) \\
& \Delta y^{\prime}=\Delta y \\
& \Delta z^{\prime}=\Delta z
\end{aligned}
$$

- Convention: S^{\prime} moves at speed $v=\beta c$ in $+x$ direction relative to S .
- Inverse: swap $S \leftrightarrow S^{\prime}$ by changing the sign of β.
- Synch $\mathbf{S}, \mathbf{S}^{\prime}$ origins \rightarrow drop Δ^{\prime} 's

$$
\begin{array}{c|}
\text { Invariant } \\
\text { Interval } \\
\text { is invariant under boosts }
\end{array}
$$

Timelike $\mathrm{I}_{\mathrm{A}-\mathrm{B}}>0 \quad$ Spacelike $\mathrm{I}_{\mathrm{A}-\mathrm{B}}<0$

- object can travel from A-B \quad cannot travel from A-B
- boost can change Δx_{AB} sign \bullet boost can change Δt_{AB} sign

The proper time interval $\Delta \tau_{\mathrm{AB}} \equiv \sqrt{ } I_{\mathrm{AB}} / c$ is the "watch-time" that elapses on the wristwatch of an inertial observer who travels from A to B.

Causality: Causal

 relationships exist where "event A causes event B", implying that A must occur before B

Nothing - even information can travel faster than c.

- worldline: path of an object
in $(c t, x)$ diagram
- boost hyperbola: locus of coordinates $(t, x)_{\mathrm{B}}$ in all possible inertial frames relative to $(t, x)_{\mathrm{A}}$ at $(0,0)$; defined by $I=(c \Delta t)^{2}-(\Delta x)^{2}$

Week 3

Principle of Relativity: The laws of physics are the same in all inertial frames.

The Speed of Light \boldsymbol{c} in vacuum is the same for all inertial observers, independent of the motion of the source.

$$
\beta \equiv \frac{v}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion
- Loss of Simultaneity
- Lattice of Rods \& Clocks: synchronize clocks on grid of rigid rulers \rightarrow how to think about time @ distant location

Lorentz Boosts

4-Vectors

$$
\begin{aligned}
& \Delta t^{\prime}=\gamma(\Delta t-\beta \Delta x / c) \\
& \Delta x^{\prime}=\gamma(\Delta x-\beta \Delta t c) \\
& \Delta y^{\prime}=\Delta y \\
& \Delta z^{\prime}=\Delta z
\end{aligned}
$$

- Convention: S^{\prime} moves at speed $v=\beta c$ in $+x$ direction relative to S .

$$
\begin{aligned}
x^{\mu} & \equiv(c t, x, y, z) \quad \Delta x^{\prime \mu}=\Lambda \Delta x^{\mu} \\
\Lambda & \equiv\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Doppler shift of light ray moving parallel to S^{\prime} $\frac{f^{\prime}}{f}=\sqrt{\frac{1-\beta}{1+\beta}}$
- Velocity addition (parallel case)
- Inverse: swap $S \leftrightarrow S^{\prime}$ by changing the sign of β.

$$
u=\frac{u^{\prime}+v}{1+u^{\prime} v / c^{2}}
$$

- Synch $\mathbf{S}, \mathbf{S}^{\prime}$ origins \rightarrow drop Δ^{\prime} 's

$$
\begin{array}{c|}
\text { Invariant } \\
\text { Interval } \\
\text { is invariant under boosts }
\end{array}
$$

Timelike $\mathbf{I}_{A-B}>0$

- object can travel from A-B

Spacelike $\mathrm{I}_{\mathrm{A}-\mathrm{B}}<0$

- boost can change Δx_{AB} sign

The proper time interval $\Delta \tau_{\mathrm{AB}} \equiv \sqrt{ } I_{\mathrm{AB}} / c$ is the "watch-time" that elapses on the wristwatch of an inertial observer who travels from A to B.

Causality: Causal relationships exist where "event A causes event B", implying that A must occur before B

Nothing - even information can travel faster than c.

- worldline: path of an object in $(c t, x)$ diagram
- boost hyperbola: locus of coordinates $(t, x)_{\mathrm{B}}$ in all possible inertial frames relative to $(t, x)_{\mathrm{A}}$ at $(0,0)$; defined by $I=(c \Delta t)^{2}-(\Delta x)^{2}$
- tilted axes: $c t^{\prime}$ and x^{\prime} axes plotted in S-frame are tilted and stretched rel to $c t, x$ axes

Principle of Relativity: The laws of physics are the same in all inertial frames.

The Speed of Light \boldsymbol{c} in vacuum is the same for all inertial observers, independent of the motion of the source.

$$
\beta \equiv \frac{v}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion
- Loss of Simultaneity
- Lattice of Rods \& Clocks: synchronize clocks on grid of rigid rulers \rightarrow how to think about time @ distant location

Lorentz Boosts and 4-Vectors

 -- Convention: S^{\prime} speed rel.

- Boost velocity:

$$
\begin{aligned}
u_{x} & =\frac{u_{x}^{\prime}+v}{1+u_{x}^{\prime} v / c^{2}} \\
u_{y, z} & =\frac{u_{y, z}^{\prime}}{\gamma\left(1+u_{x}^{\prime} v / c^{2}\right)}
\end{aligned}
$$

Invariant Interval

$$
I=(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}
$$

is invariant under boosts

Timelike $\mathbf{I}_{A-B}>0$

- object can travel from A-B
- boost can change Δx_{AB} sign

Spacelike $\mathrm{I}_{\mathrm{A}-\mathrm{B}}<0$

- cannot travel from A-B
- boost can change Δt_{AB} sign

The proper time interval $\Delta \tau_{\mathrm{AB}} \equiv \sqrt{ } I_{\mathrm{AB}} / c$ is the "watch-time" that elapses on the wristwatch of an inertial observer who travels from A to B. light ray (parallel case)

$$
\frac{f^{\prime}}{f}=\sqrt{\frac{1-\beta}{1+\beta}}
$$

to S is $\mathrm{v}=\beta c$ in $+x$ direction.

- Inverse: swap $S \leftrightarrow S^{\prime}$ by changing the sign of β.
- Synch origins to drop Δ 's

Dynamics

$$
\begin{array}{r}
\vec{F}=\frac{d \vec{p}}{d t} \quad W=\int \vec{F} \cdot d \vec{l}=\Delta E \\
\vec{p}=m \vec{v} \quad E=m c^{2}
\end{array}
$$

$$
E=\sqrt{(p c)^{2}+\left(m_{0} c^{2}\right)^{2}}
$$

$\vec{p}=\gamma m_{0} \vec{v} \quad E=\gamma m_{0} c^{2} \quad m=\gamma m_{0}$
$K E \equiv E-m_{0} c^{2} \quad \beta=\frac{p c}{E}$

Causality: Causal

 relationships exist where "event A causes event B", implying that A must occur before BPrinciple of Relativity: The laws of physics are the same in all inertial frames.

The Speed of Light \boldsymbol{c} in vacuum is the same for all inertial observers, independent of the motion of the source.

$$
\beta \equiv \frac{v}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion
- Loss of Simultaneity
- Lattice of Rods \& Clocks: synchronize clocks on grid of rigid rulers \rightarrow how to think about time @ distant location

Lorentz Boosts and 4-Vectors

 -- Convention: S^{\prime} speed rel.
- Boost velocity:

$$
\begin{aligned}
u_{x} & =\frac{u_{x}^{\prime}+v}{1+u_{x}^{\prime} v / c^{2}} \\
u_{y, z} & =\frac{u_{y, z}^{\prime}}{\gamma\left(1+u_{x}^{\prime} v / c^{2}\right)}
\end{aligned}
$$

$$
\begin{array}{c|}
\text { Invariant } \\
\text { Interval } \\
\hline \text { is invariant under boosts }
\end{array}
$$

Timelike $\mathbf{I}_{\mathrm{A}-\mathrm{B}}>0$

- object can travel from A-B
- boost can change Δx_{AB} sign

Spacelike $\mathrm{I}_{\mathrm{A}-\mathrm{B}}<\mathbf{0}$

- cannot travel from A-B
- boost can change Δt_{AB} sign

The proper time interval $\Delta \tau_{\mathrm{AB}} \equiv \sqrt{ } I_{\mathrm{AB}} / c$ is the "watch-time" that elapses on the wristwatch of an inertial observer who travels from A to B.

- Boost frequency of light ray (parallel case)

$$
\frac{f^{\prime}}{f}=\sqrt{\frac{1-\beta}{1+\beta}}
$$

to S is $\mathrm{v}=\beta c$ in $+x$ direction.

- Inverse: swap $S \leftrightarrow S^{\prime}$ by changing the sign of β.
- Synch origins to drop Δ 's

$$
\Delta x^{\prime \mu}=\Lambda \Delta x^{\mu}
$$

$$
\begin{gathered}
\vec{F}=\frac{d \vec{p}}{d t} \quad W=\int \vec{F} \cdot d \vec{l}=\Delta E \\
m_{\text {inert }}=\gamma m_{0} \quad \vec{p}=m_{\text {inert }} \vec{v} \quad E=m_{\text {inert }} c^{2} \\
6 \quad \downarrow \\
E=\sqrt{(p c)^{2}+\left(m_{0} c^{2}\right)^{2}} \\
\vec{p}=\gamma m_{0} \vec{v} \quad E=\gamma m_{0} c^{2} \quad \beta=\frac{p c}{E} \\
K E \equiv E-m_{0} c^{2} \quad \text { E,p conserved }
\end{gathered}
$$

$$
x^{\mu} \equiv(c t, x, y, z)
$$

- (Rest) mass not conserved, can be converted \leftrightarrow energy
- photon: $m_{0}=0, \gamma$ equ's useless

> Causality: Causal relationships exist

Nothing - even information can travel faster than c.

Minkowski Diagrams

- worldline: path of an object in $(c t, x)$ diagram
- boost hyperbola: locus of coordinates $(t, x)_{\mathrm{B}}$ in all possible inertial frames relative to $(t, x)_{\mathrm{A}}$ at $(0,0)$; defined by $I=(c \Delta t)^{2}-(\Delta x)^{2}$
- tilted axes: $c t^{\prime}$ and x^{\prime} axes plotted in S-frame are tilted and stretched rel to $c t, x$ axes

Dynamics

 and stretched rel to x, x axes