Plan for This Session

Questions

Midterm Exam, Thursday March 15th

- midterm will cover modules 1 to 5 + news
- old tests available for practice on course web-page
- 50% of problems will be from old exam
- additional review session, Sunday, March 11th, 4-6 pm

News

Module 5: Nuclear Weapon Delivery Systems
MOSCOW (Reuters) - President Vladimir Putin unveiled an array of new nuclear weapons on Thursday, in one of his most bellicose speeches in years, saying they could hit almost any point in the world and not be intercepted.

Putin, who polls indicate should be easily re-elected on March 18, backed his tough rhetoric with video clips of some of the new missiles he was talking about, which were projected on a giant screen behind him at the conference hall in central Moscow where he was addressing Russia’s political elite.

“They have not succeeded in holding Russia back,” said Putin, referring to the West. “Now they need to take account of a new reality and understand that everything I have said today is not a bluff.”

Among the new weapons that Putin said were either in development or ready: a new intercontinental ballistic missile, a small nuclear warhead that could be attached to cruise missiles, underwater nuclear drones, a supersonic weapon and a laser weapon. The audience, made up of Russian lawmakers and other leading figures, frequently stood up and applauded his presentation, which culminated with the Russian national anthem being played.
Putin, who has dominated his country’s political landscape for the last 18 years and often used anti-Western rhetoric to mobilize support, said the technological advances meant that NATO’s build-up on Russia’s borders and the roll-out of a U.S. anti-missile system would be rendered useless.

“I hope that everything that was said today will sober up any potential aggressor,” said Putin. “Unfriendly steps towards Russia such as the deployment of the (U.S.) anti-missile system and of NATO infrastructure nearer our borders and such like, from a military point of view, will become ineffective.”

Steps to contain Russia would also become unjustifiably expensive and pointless, he forecast. The Russian leader also voiced concerns about a new U.S. nuclear doctrine, saying that Russia’s own doctrine was defensive and only envisaged the use of nuclear weapons in response to an attack.

Russia has repeatedly said it is keen to hold talks with the United States about the balance of strategic nuclear power. “We will view any use of nuclear weapons against Russia or its allies, be it of small, medium or any force, as a nuclear attack on our country,” said Putin. “Our response will be immediate. Nobody should have any doubts about that.”

Additional reporting by Andrey Ostroukh, Maria Tsvetkova, Vladimir Soldatkin, Polina Devitt, Katya Golubkova, Polina Nikolskaya and Denis Pinchuk; Writing by Andrew Osborn; Editing by Kevin Liffey
Module 5: Delivery Systems

Part 1: Overview of nuclear weapon delivery methods

Part 2: Aircraft

Part 3: Cruise missiles

Part 4: Ballistic missiles

Part 5: Technical and operational aspects

Part 6: Nuclear command and control
Part 1: Overview
Basic Propulsion Mechanisms

- None
 (examples: mines, depth charges)

- Explosives
 (example: artillery shell)

- Propellers
 (example: torpedo, speeds ~ 50 mph)

- Jet engines
 (example: bomber, speeds ~ 600 mph)

- Rocket motor
 (example: missile, speeds ~ 18,000 mph)

- Unconventional
 (examples: barge, boat, Ryder truck, backpack, shipping container)
Examples of Weapon Delivery Methods

Air-breathing vehicles —
- Aircrafts (manned)
- Cruise missiles (unmanned aircraft)

Rocket-propelled vehicles —
- Land-based ballistic missiles
- Submarine-based ballistic missiles
- [Surface ship-based ballistic missiles]*
- [Space-based ballistic missiles]*
- Short range rockets (no guidance)

Other —
- Artillery/howitzers
- Land mines
- Torpedoes

* Never deployed by US or USSR/Russia for nuclear weapons
Important Attributes of Delivery Systems

- Range
- Speed
- Accuracy
- Recallability
- Reliability
- Payload/throw-weight
- Ability to penetrate defenses
- Survivability (at deployment base)
- Capital and operational costs
- Safety
Air-Breathing Vehicles

Aircraft (manned) —

• Long-range (“heavy”) bombers
 (examples: Bear, Blackjack, B52, B-1, B-2)

• Intermediate-range bombers
 (examples: B-29, FB-111, …)

• Tactical aircraft
 (examples: F-16, F-18, F-22, …)

Cruise missiles (unmanned) —

• Air-launched cruise missiles (ALCMs)

• Sea-launched cruise missiles (SLCMs)

• Ground-launched cruise missiles (GLCMs)
Rocket-Powered Vehicles

Land-based ballistic missiles —
 • Intercontinental-range ballistic missiles (ICBMs)
 • Shorter-range ballistic missiles

Sea-based ballistic Missiles —
 • Submarine-launched ballistic missiles (SLBMs)
 • Surface-ship-launched ballistic missiles
Historical Examples of Other Nuclear Weapon Delivery Methods

Nuclear artillery shells:
- 16” naval guns
- 280 mm cannons (howitzer)

"Atomic Annie" 1953: 15-kt projectile to range of 17 miles

Davy Crocket Nuclear Bazooka
- 76 lb., 10–250 t yield, 1.2–2.5 mile range
- Deployed 1961–1971; 2,100 produced

Atomic Demolition Munitions (ADMs)
Carried by back pack, 0.01 kt yield?

Nuclear-armed torpedoes
Initially US nuclear weapons delivery systems were developed without an overall coherent plan, in the —

- Truman administration
- Eisenhower administration

Robert McNamara as President Kennedy’s Secretary of Defense changed this:

- Survivable basing
- Secure command and control
- Determine how much is enough by calculation!

Concluded 400 ‘effective’ megatons (EMT) would be “enough”

- The need to organize the roles for the USAF and the USN defined the “Triad” paradigm
- Established the SIOP (Single Integrated Operational Plan) for targeting
Strategic nuclear delivery vehicles (SNDVs) —

The definition of “strategic” nuclear weapons was important for arms control but was controversial during the Cold War: the Soviet Union wanted to count weapons on its periphery whereas the U.S. did not want to count these:

- Systems with intercontinental range (U.S. def.)
- Systems able to strike directly the homeland of the adversary (Soviet def.)

Systems in the Triad —

- Intercontinental-range bombers
- Intercontinental-range ballistic missiles (ICBMs)
- Submarine-launched ballistic missiles (SLBMs)
Module 5: Nuclear Delivery Systems

Part 2: Aircraft
Examples of Intercontinental Bombers – 1

Tu-95
65

Tu-22
160

Tu-160
16
Examples of Intercontinental Bombers – 2

B-52 - Mach 0.83, 8800 miles, 31.5 tons
58 units active, 18 reserve

B-1 - Mach 1.2, 7500 miles, 34 tons
conventional only, 62 units active

B-2 - Mach 0.85, 7000 miles, 18 tons
20 units active
U.S. B-2 Stealth Bomber

Speed: Mach 0.85
Altitude: 50,000 feet
Range: 7,000 miles
Refuel: 11,500 miles

Possible payloads:
• 16 B83 gravity bombs
• 20 B61 bombs
• 80 500 lb bombs

of B-2s 20
Currently Deployed U.S. and Russian Bombers

Current US bombers —
 • B-52 carrying bombs, or cruise missiles
 • B1 carry conventional armament
 • B-2 each can carry 16 B83 bombs

Russian bombers* —
 • Bear carrying bombs
 • Blackjacks carrying bombs
*few are currently operational
Intercontinental Bomber Issues

Evolution of bomber missions —

- High-altitude bombing
- Low-altitude penetration and bombing
- As a stand-off launch platform for Air-launched cruise missiles (ALCMs)

Operational considerations —

- Launch, release to targets, and arming of weapons requires permission from the National Command Authority (NCA) (in the United States, the President or his designated successor)
- Can be recalled until weapons (e.g., bombs, cruise missiles, or air-to-surface ballistic missiles) are dropped or fired from the bomber
- The United States has substantial in-flight refueling capability; other countries have none
Plan for This Session

News

Module 5: Nuclear Weapon Delivery Systems
TOKYO — North Korea has vowed not to test missiles or nuclear weapons during proposed talks with the United States and South Korea, officials from South Korea said Tuesday after returning from surprisingly productive meetings in Pyongyang.

North Korea said it was prepared to hold “candid talks” with the United States about denuclearization and normalizing relations and “made it clear” that it would not resume provocations while engaged in dialogue, the officials said upon returning to Seoul.

North Korea did not confirm South Korea’s version of events, saying simply that the two sides “made a satisfactory agreement” during the meeting between the North’s leader, Kim Jong Un, and envoys sent by the South’s president, Moon Jae-in.
North Korea says it will halt nuclear and missile tests while talking with U.S., Seoul says

There is plenty of cause for skepticism. North Korea has previously said it will give up its nuclear weapons only if the United States withdraws its military from South Korea, and North Korea has previously reneged on every deal it has ever signed.

But the sudden thaw could also pave the way for talks between Kim’s regime and the Trump administration and bring about a reprieve in the months of acute tensions on the Korean Peninsula.

President Trump said Tuesday there was “possible progress being made in talks with North Korea.”

“For the first time in many years, a serious effort is being made by all parties concerned,” he tweeted. “May be false hope, but the U.S. is ready to go hard in either direction!” he said, apparently suggesting he was open to both diplomacy and military action for dealing with North Korea.
North Korea says it will halt nuclear and missile tests while talking with U.S., Seoul says

If events play out the way Seoul hopes, Moon will be meeting Kim for a summit on the southern side of the inter-Korean border late next month.

Moon’s progressive predecessors both traveled to Pyongyang for summits with Kim’s father, Kim Jong Il. Analysts had said it would be unseemly for a South Korean leader to make the same pilgrimage a third time.

The two sides agreed that the next summit will be held inside Peace House at Panmunjom, the “truce village” straddling the Demilitarized Zone that divides the peninsula. The house is just over the southern side of the border line.

This would be the first time since the Korean War ended in 1953 that the North Korean leader had crossed into the South and the first meeting between Kim and another head of state in his six years in power.
North Korea has a history of striking bargains with the outside world, almost always involving some kind of payment for some kind of weapons freeze. But it has quickly broken the deals that it has signed, including the 1994 “agreed framework” and a 2005 denuclearization deal struck during now-defunct six-party talks.

This track record suggests that skepticism about this tentative agreement is warranted.

“I’d caution against too much optimism because we’ve been down this road too many times before,” said Abraham Denmark, a former Asia official at the Pentagon, now director of the Asia program at the Wilson Center.
Module 5: Nuclear Delivery Systems

Part 3: Cruise Missiles
Cruise missiles (CMs) are pilotless vehicles powered by jet engines:

- Fly within the atmosphere
- Speeds are subsonic

Although cruise missiles were conceived 60 years ago, CMs did not become important until the late 1970s, when technological advances made them militarily useful. These advances were:

- Smaller and lighter nuclear warheads
- Efficient turbofan engines
- Highly capable miniaturized computers
- GPS, TERCOM (Terrain Contour Matching), and terminal guidance
- “Stealth” airframe technology
Key properties —

- Small
- Easily stored and launched
- Highly penetrating
- Versatile
- Highly accurate
- Very cheap (about ~ $1 million per copy)
Long-Range Cruise Missiles – 1

Range: 1000 – 2000 miles
Pay loads: 500 – 1200 lbs
Long-Range Cruise Missiles – 2

Conventionally-Armed Tomahawk Cruise Missile

- velocity: 550 mph
- pay load: 1000 lbs
- range: 1550 miles
Chinese Silkworm Anti-Ship Cruise Missile

Chinese CSS-C-2 SILKWORM / HY-1 / SY-1 Anti-Ship Cruise Missile

Velocity: 680 mph
payload: 660 lbs
range: 180 miles
Launching Cruise Missiles – 1
Launching Cruise Missiles – 2
Cruise-Missile Guidance – 1

TERCOM: Terrain Contour Matching
DSMAC: Digital Scene Matching Area Correlation
Cruise-Missile Guidance – 2

Flight Profile of a Tomahawk Missile
Cruise-Missile Guidance – 3

Tomahawk Land Attack (Non-Nuclear) Operational Concept

Launch platform dependent

Elements common to all launches

Suppressed infrared, visual and radar cross section signatures

TERCOM update points/map grids

Terminal guidance phase, using optical sensor

Defense avoidance (to avoid SAM site)

SAM site

Way points

Defense avoidance (to avoid fighter base)

DSMAC (Digital Scene Matching Area Correlator) scenes

• Terrain following
• Very low altitude
• Terrain masking

Source: Joint Cruise Missiles Project Office.
Accuracy of Cruise Missiles
Implications of Cruise Missiles – 1

The US developed and deployed CMs without coherent plan that considered the offensive, defensive, and long-range impact of their deployment.

Military history —

• Cruise missiles were the US countermeasure to the heavy Soviet investment in air defenses
• They capitalized on the temporary US lead in this technology
• However, the US is more vulnerable to CMs than Russia due to the proximity of potential targets to the sea shores.
Implications of Cruise Missiles – 2

Implications for U.S. security—

• Very small (hard to find with National Technical Means)
• Can be based almost anywhere (hard to count)
• Dual capable (almost impossible to distinguish nuclear from high-explosive warhead)
• Cheap (can be produced in large numbers)

Several countries could develop a mechanism to launch SRBMs, MRBMs, or land-attack cruise missiles from forward-based ships or other platforms
Module 5: Nuclear Delivery Methods

Part 4: Ballistic Missiles
Air Breathing Delivery Systems (Bombers & Cruise Missiles) vs Ballistic Missiles

Air breathing systems:
- carry the fuel on board but take the oxidizer from the atmospheres → operate endo-atmospheric

Ballistic missiles:
- carry fuel and oxidizer → can operate exo-atmospheric
Attributes of Ballistic Missiles

Basing modes —
 • Fixed (e.g., blast-hardened silos in the ground)
 • Mobile (e.g., on railroad cars)

Propellant s —
 • Liquid (fuel and oxidizer are separate)
 • Solid (fuel and oxidizer are mixed)

Payloads —
 • Single warhead + penetration aids (“penaids”)
 • Multiple warheads + penetration aids
Categories of Ballistic Missiles Based on Their Ranges (Important)

Short-range ballistic missiles (SRBMs) —
 • Ranges under 1,000 km

Medium-range ballistic missiles (MRBMs) —
 • Ranges between 1,000 km and 3,000 km

Intermediate-range ballistic missiles (IRBMs) —
 • Ranges between 3,000 km and 5,500 km

Intercontinental-range ballistic missiles (ICBMs, SLBMs) —
 • Limited-range ICBMs (LRICBMs): 5,500 to 8,000 km
 • Full-range ICBMs (FRICBMs): > 8,000 km
 • Ranges of US and Russian ICBMs are ~ 12,000 km

These categories are not fluid, because they are based on the performance characteristics of the missile.
Categories of Ballistic Missiles Based on Their Ranges (Important)

Short-range ballistic missiles (SRBMs) —
• Ranges under 1,000 km

Medium-range ballistic missiles (MRBMs) —
• Ranges between 1,000 km and 3,000 km

Intermediate-range ballistic missiles (IRBMs) —
• Ranges between 3,000 km and 5,500 km

Intercontinental-range ballistic missiles (ICBMs, SLBMs) —
• Limited-range ICBMs (LRICBMs): 5,500 to 8,000 km
• Full-range ICBMs (FRICBMs): > 8,000 km
• Ranges of US and Russian ICBMs are ~ 12,000 km

These categories are not fluid, because they are based on the performance characteristics of the missile.
Phases of Flight of Intercontinental-Range Ballistic Missiles (Important)

Basic phases of flight of a (MIRVed) intercontinental ballistic missile (ICBMs and SLBMs) —

• Boost phase: rocket motors burning

• Post-boost phase (release of payload from bus)

• Midcourse phase: ballistic motion in space

• Terminal phase: re-entrance into atmosphere and passage through atmosphere
Phases of Flight of Intercontinental-Range Ballistic Missiles (Important)

- Boost phase: rocket motors burning
- Post-boost phase (release of payload from bus)
- Midcourse phase: ballistic motion in space
- Terminal phase: passage through atmosphere
Categories of Ballistic Missiles Based on Their Purposes

Tactical ballistic missiles (TBMs) —
• For use on the battlefield (e.g., on a particular front)
• Usually have shorter ranges (SRBMs)

Theater ballistic missiles (TBMs) —
• For use in an entire theater of war (e.g., the Middle East)
• Usually have longer ranges than tactical missiles

Strategic ballistic missiles (an example of SNDVs – Strategic Nuclear Weapons Delivery Vehicle) —
• For attacking the homeland of the adversary
• May have longer, possibly intercontinental ranges

These categories are fluid, because they are based on the intent of the user at the time the missile is fired.
Missile Guidance Technologies

Inertial —
 • Uses gyroscopes and accelerometers
 • No contact with outside world

Stellar —
 • Star trackers update inertial guidance system

Satellite —
 • Uses accurate (atomic) clocks on satellites
 • Uses coded radio transmissions
 • Uses sophisticated receivers
 • Can determine both position and velocity very accurately using signals from 3 to 4 satellites
Trajectories and Phases of Flight of Missiles With Various Ranges

- **Ground range, km**
 - 100
 - 200
 - 300
 - 400
 - 500
 - 600
 - 700
 - 800
 - 900
 - 1000

- **Altitude, km**
 - 100
 - 200
 - 300
 - 400
 - 500
 - 600
 - 700
 - 800
 - 900
 - 1000

- **Boost phase:**
 - 30-40 s, 10-15 km
 - 60-90 s, 40-60 km
 - 60-70 s, 25-35 km
 - 80-140 s, 100-120 km
 - 170-300 s, 180-220 km

- **Total flight:**
 - 2 minutes
 - 6 minutes
 - 13 minutes
 - 30 minutes

- **Apogee:**
 - ~650 km
 - ~1300 km

- **Exoatmosphere**
- **Endoatmosphere**

Courtesy of D. Moser

18p280 Delivery Systems, p. 52
Proliferation of Ballistic Missile Technologies

- South Africa
- UK
- USA
- Iraq
- Germany
- Brazil
- Egypt
- Afghanistan
- Soviet Union/Russia
- North Korea
- Yemen
- Argentina
- France
- India
- Taiwan
- South Korea
- Vietnam
- Bulgaria
- Pakistan
- China
- Libya
- Saudi Arabia
- Syria
- Iran
- North Korea
- South Korea
- Vietnam
- Iraq
- Germany
- Brazil
- Egypt
- Afghanistan
- Soviet Union/Russia
- Yemen
Soviet Scud Missiles and Derivatives - 1

Soviet Scud-B Missile (based on the German V2)
Range: 300 km

Iraqi Al-Hussein SRBM
Range: 600–650 km
Pakistan’s Ghauri MRBM and transporter (range 1,300 km).
It is almost identical to North Korea’s No Dong MRBM, which is based on Scud technology that North Korea got from Egypt in the 1970s.
Titan Family of Missiles and Launch Vehicles

1959 – 2005 ICMB & civilian uses

103 feet
Titan terror explodes in the Arkansas hills
Shortly after sunset one day last week, a maintenance worker on the third level of a silo housing a 103-ft. Titan II Intercontinental ballistic missile near Damascus, in the Arkansas hills north of Little Rock, dropped the socket of a wrench. The 3-lb. tool plummeted 70 ft. and punctured a fuel tank. As flammable vapors escaped, officials urged the 1,400 people living in a five-mile radius of the silo to flee. The instructions: "Don't take time to close your doors—just get out."

And with good reason. At 3:01 a.m., as technicians gave up trying to plug the leak and began climbing from the silo, the mixture of fuel and oxygen exploded. Orange flames and smoke spewed out, lighting up the sky over Damascus. The blast blew off a 750-ton concrete cover. One worker was killed; 21 others were hurt.

Today: LGM-30G Minuteman III ➔ 3 stage solid rocket fuel
Range: 11,000km +
Speed: 24,100 km/h or 6.7km/s (terminal phase)
Lecture Question

Which one of the following technologies was not crucial in developing militarily useful cruise missiles?

A. Light carbon fiber materials for the airframes
B. More efficient engines
C. Much smaller and more capable computers
D. GPS and other methods for more accurate guidance
E. “Stealth” technologies to make them harder to detect
Answer

Which one of the following technologies was not crucial in developing militarily useful cruise missiles?

A. Light carbon fiber materials for the airframes
B. More efficient engines
C. Much smaller and more capable computers
D. GPS and other methods for more accurate guidance
E. “Stealth” technologies to make them harder to detect
Lecture Question

Which one of the following delivery vehicles was not considered a leg of the Cold War nuclear “Triad”?

A. Submarine-launched ballistic missiles
B. Ship-launched ballistic missiles
C. Land-based intercontinental ballistic missiles
D. Land-based intercontinental bombers
Answer

Which one of the following delivery vehicles was not considered a leg of the Cold War nuclear “Triad”?

A. Submarine-launched ballistic missiles
B. **Ship-launched ballistic missiles**
C. Land-based intercontinental ballistic missiles
D. Land-based intercontinental bombers
Lecture Question

Which one of the following strategic nuclear delivery vehicles can be recalled after launch?

A. Submarine-launched ballistic missiles
B. Land-based intercontinental ballistic missiles
C. Land-based intercontinental bombers
Which one of the following strategic nuclear delivery vehicles can be recalled after launch?

A. Submarine-launched ballistic missiles
B. Land-based intercontinental ballistic missiles
C. Land-based intercontinental bombers
Re-Entry Vehicles (RVs)

Basic types —

• MRV = multiple RV
 — Final stage carries more than 1 RV
 — Final stage has no propulsion
 — RVs are *not* independently targetable

• MIRV = multiple, independently targetable RV
 — Final stage carries more than 1 RV
 — Final stage has guidance package and propulsion
 — RVs are independently targetable

• MARV = maneuverable RV
 — RV has a guidance package
 — RV maneuvers during the terminal phase, using, e.g., thrusters or aerodynamic forces

MK21 re-entry vehicles on Peacekeeper MIRV bus
MIRV Technology

MX Peacekeeper MIRV

Soviet ICBM MIRV
MX Peacekeeper missile tested at Kwajalein Atoll

Source: www.smdc.army.mil/kwaj/Media/Photo/missions.htm
Minuteman ICBM (Schematic)
Plan for This Session

Questions

No midterm next week

Module 5: Nuclear Weapon Delivery Systems
THAAD and China's Nuclear Second-Strike Capability

China may be afraid that THAAD will degrade its own nuclear second-strike capability.

Earlier this week, hours after North Korea’s launch of a four-missile salvo into the Sea of Japan, the United States delivered and began deployment of part of the Terminal High-Altitude Area Defense (THAAD) system. “Continued provocative actions by North Korea, to include yesterday’s launch of multiple missiles, only confirm the prudence of our alliance decision last year to deploy THAAD to South Korea,” said the head of U.S. Pacific Command, Admiral Harry Harris, underlining the rationale behind the decision.

China, South Korea’s neighbor and the United States’ great power competitor in Asia, has long been vocally opposed to the deployment of THAAD on the Korean peninsula. In response to the deployment, Geng Shuang, a Chinese foreign ministry spokesperson, noted that China was “resolutely against the deployment of THAAD by the US and the ROK in the ROK, and will take firm and necessary steps to safeguard our security interests.”

For starters, let’s put to rest the misconception that China’s opposition to the THAAD deployment is because it is worried about the interceptor shooting down its missiles. As the “T” indicates in THAAD, the system is only capable of intercepting projectiles in their “terminal” phase (or as they’re hurtling towards the earth in descent). Unless China would consider firing ballistic missiles at South Korea, THAAD will do no good against its missiles (say, it’s intercontinental ballistic missiles going toward the United States in a nuclear exchange).
THAAD and China's Nuclear Second-Strike Capability

China may be afraid that THAAD will degrade its own nuclear second-strike capability.

By Ankit Panda
March 08, 2017

For China, opposition to THAAD is simple: it’s all about the X-band AN/TPY-2 radar unit that accompanies the interceptor battery and aids in targeting. The radar unit has yet to be delivered; it is expected to arrive in South Korea in April.

To be clear, China hasn’t been coy about specifically pointing to the radar issue. In fact, it has been explicit. Chinese Foreign Minister Wang Yi has made multiple references to the “X-band radar” that accompanies the THAAD battery, pointing out last February that it “goes far beyond the defense need of the Korean Peninsula.” This isn’t a case of Beijing nebulously stating its opposing to the deployment in terms of its national interest.

Two Competing Hypotheses

There are two possible serious explanations for how THAAD infringes on Chinese national interests. One is less convincing than the other. I’ll address both in order, beginning with the less convincing explanation.

The first hypothesis is that China may fear that the AN/TPY-2 radar at the former Lotte Group golf course in Gyeonggido will give the United States unprecedented surveillance insight into sensitive Chinese missile testing and development work deep within the mainland.

This may sound convincing at first glance, but there’s a few reasons why it doesn’t hold water. First, the South Korean THAAD deployment is not the first AN/TPY-2 deployment from the United States; nor is it even the first deployment of an advanced radar by the United States to the region. The U.S. already has two AN/TPY-2 installations in Japan, at the Kyogamisaki Communications Site in Kyoto prefecture and Shariki in Aomori prefecture.

Second, while we have no watertight estimates on just how capable the AN/TPY-2 radar is and in what configurations, even the most generous estimates don’t leave the Gyeonggido unit capable of any useful surveillance deep into the Gobi desert, where China has its most active and sensitive missile testing ranges. (AN/TPY-2 range estimates go from “several hundred miles” to 3,000 km.) I’ve mapped out the ranges below with the most generous range estimate of 3,000 km, using a...
THAAD and China's Nuclear Second-Strike Capability

China may be afraid that THAAD will degrade its own nuclear second-strike capability.

The second hypothesis is, I think, more convincing, and one where Beijing may have legitimate concern about the Gyeongsangbuk-do AN/TPY-2 radar upsetting U.S.-China strategic nuclear stability. Specifically, China may — correctly or incorrectly — fear that its nuclear second-strike capability is significantly degraded as a result of a third U.S. AN/TPY-2 radar going up specifically near the southern tip of the Korean peninsula.

To avoid the need for a massive nuclear build-up and to feel comfortable with its several hundred or so nuclear warheads for targeting, China needs to feel comfortable enough its intercontinental ballistic missiles can reliably penetrate U.S. antiballistic missile countermeasures. Pre-THAAD-in-South-Korea, a Chinese ICBM launch would still have been exposed to the AN/TPY-2s in Japan, but that exposure alone wouldn’t have been enough to reliably help U.S. ground-based interceptors (GBI) in Alaska get a convincing edge against incoming Chinese warheads. (Set aside GBI’s patchy success record for the moment.)

With a third AN/TPY-2 in South Korea, the resolution of U.S. data on incoming Chinese warheads would potentially be greatly enhanced. Specifically, China may fear that penetration aids for its ICBMs — such as decoy warheads — would be degraded, lowering the certitude that its existing arsenal would be sufficient for penetrating past the U.S. ABM apparatus. Theoretically, a triangulated AN/TPY-2 setup between Japan and South Korea could give U.S. midcourse interceptors in Alaska enough warning to have a better shot at an incoming Chinese missile.

Moreover, specifically, a Gyeongsangbuk-do-based AN/TPY-2 would also potentially have a unique vantage point for differentiating real warheads from decoys. Li Bin, writing for the Kyunghyang Daily, outlines this case in greater detail: “The THAAD radar to be deployed in the ROK would be in a very special position where it could view the back of the Chinese warheads flying over the northeast part of China when it is deployed to watch missiles from North Korea.”
Flight of a Minuteman ICBM (Schematic)
Flight of MIRV’d ICBMs

Four phases of the flight of an intercontinental-range missile armed with MIRVs (Multiple Independently Targetable Reentry Vehicles)—

• Boost phase (lasts about 1–5 min)
 — Rocket motors are burning
 — Missile rises through the atmosphere and enters near-Earth space
 — Stages drop away as they burn out

• Post-boost phase (lasts 5–10 min)
 — Bus separates from the final stage
 — Bus maneuvers and releases RVs

• Midcourse phase (lasts about 20 min)
 — RVs fall ballistically around the Earth, in space

• Terminal phase (lasts about 20–60 sec)
 — RVs re-enter the Earth’s atmosphere and encounter aerodynamic forces
 — RVs fall toward targets, until detonation or impact
Examples of US and Russian ICBMs

Recent US ICBMs —

- **MX** Solid-propellant, range ~ 12,000 km, 10 warheads (Peacekeeper, retired 2005)
- **MMIII** Solid-propellant, range ~ 12,000 km, Capability for 3 warheads (Minuteman) Presently deployed with 1 warhead

Recent Russian ICBMs —

- **SS-24** Solid-propellant, range > 9,000 km
- **SS-25** Solid-propellant, range > 9,000 km
- **SS-27** Solid-propellant, range > 9,000 km
US ICBMs – 2

Launch of a Minuteman ➔ video!

Launch of an MX
Russian, Chinese (and North Korean) ICBMs – 1

Source: national air and space intelligence center
“Ballistic and Cruise Missile Threat”, 2009
Russian, Chinese (and North Korean) ICBMs – 2

<table>
<thead>
<tr>
<th>Missile</th>
<th>Number of Stages</th>
<th>Warheads per Missile</th>
<th>Propellant</th>
<th>Deployment Mode</th>
<th>Maximum Range* (miles)</th>
<th>Number of Launchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS-18 Mod 4</td>
<td>2 + PBV</td>
<td>10</td>
<td>Liquid</td>
<td>Silo</td>
<td>5,500+</td>
<td>104</td>
</tr>
<tr>
<td>SS-18 Mod 5</td>
<td>2 + PBV</td>
<td>10</td>
<td>Liquid</td>
<td>Silo</td>
<td>6,000+</td>
<td>(total for Mods 4 & 5)</td>
</tr>
<tr>
<td>SS-19 Mod 3</td>
<td>2 + PBV</td>
<td>6</td>
<td>Liquid</td>
<td>Silo</td>
<td>5,500+</td>
<td>122</td>
</tr>
<tr>
<td>SS-25</td>
<td>3 + PBV</td>
<td>1</td>
<td>Solid</td>
<td>Road-mobile</td>
<td>7,000</td>
<td>201</td>
</tr>
<tr>
<td>SS-27 Mod 1</td>
<td>3 + PBV</td>
<td>1</td>
<td>Solid</td>
<td>Silo & road-mobile</td>
<td>7,000</td>
<td>54</td>
</tr>
<tr>
<td>SS-27 Mod-X-2</td>
<td>3 + PBV</td>
<td>Multiple</td>
<td>Solid</td>
<td>Silo & road-mobile</td>
<td>7,000</td>
<td>Not yet deployed</td>
</tr>
</tbody>
</table>

China						
CSS-3	2	1	Liquid	Silo & transportable	3,400+	10 to 15
CSS-4 Mod 2	2	1	Liquid	Silo	8,000+	About 20
CSS-10 Mod 1	3	1	Solid	Road-mobile	4,500+	Fewer than 15
CSS-10 Mod 2	3	1	Solid	Road-mobile	7,000+	Fewer than 15

| North Korea | | | | | | |
| Taepo Dong 2 | 2 | 1 | Liquid | Undetermined | 3,400+ | Not yet deployed |

Source: national air and space intelligence center
“Ballistic and Cruise Missile Threat”, 2009
Russian, Chinese (and North Korean) ICBMs – 3

The Russian Dnepr space launch vehicle is based on the SS-18 ICBM.

Chinese CSS-10 Road-Mobile Launcher

Russian SS-27 Road-Mobile Launcher
US and Russian SSBNs

USSR

- **YANKEE-Class**
 - YANKEE I 130m 16 Tubes SS-N-6
 - YANKEE II 130m 12 Tubes SS-N-17

- **DELTA-Class**
 - DELTA I 140m 12 Tubes SS-N-8
 - DELTA II 155m 16 Tubes SS-N-8
 - DELTA III 155m 16 Tubes SS-N-18
 - DELTA IV 160m 16 Tubes SS-N-23

- **TYFHOON-Class**
 - TYFHOON 170m 20 Tubes SS-N-20

- **Borei-Class**
 - Length: 170 m, 20 Tubes

US

- **POSEIDON SSBN**
 - Length: 129.5m 16 Tubes

- **TRIDENT (OHIO-Class) SSBN**
 - Length: 170.7m 24 Tubes

Notes:
- Delta I + II retired
- Delta III 1 left
- Delta IV 6 left
- Decommissioned: ~1988-1995
- POSEIDON retired 1992
- TRIDENT retired 1992
US Trident SSBN (14 SSBNs, 4 SSGNs)

Trident Missile Tubes With Covers Open

- 24 Trident C4 SLBMs
- 8 MIRVs with 100kt W76
- up to 192 targets
- SLBM range 7400 km

Trident Submarine Underway

- speed: 20 knots
- SSBN range: unlimited
- deployment: 70-90 days, two rotating crews
- Displacement: 16500 tons
- Length: 170 m
- width: 13 m
Cold Launch Mode

Missile is ejected with high pressure steam before rocket engines are started: “Cold Launch”
US Trident SSBN

Launch video
Submarine-Based Missiles

US SLBMs —

- Trident C4 missiles carried 8 MIRVs each (solid propellant, range 7400 km)
- Trident D5 missiles carry 8 MIRVs each (solid propellant, range 7400 km)

Russian SLBMs —

- SS-N-8 missiles carried 1 warhead each (range 9100 km)
- SS-N-18 missiles carried 3 warheads each (liquid propellant, range 6500 km)
- SS-N-20 missiles carried 10 warheads each (solid propellant, range 8300 km)
- SS-N-23 missiles carried 4 warheads each (liquid propellant, range 8300 km)
Module 5: Nuclear Delivery Systems

Part 5: Technical and Operational Aspects
MTCR is the 1987 Missile Technology Control Regime to restrain missile exports.
34 member countries (the leading missile producing countries have agreed to restrict missile exports). China and Israel are not members but have agreed unilaterally to adhere to the provisions of the agreement.
The Performance Required for Missile Warheads Increases Greatly with Increasing Missile Range

- Flight altitude (km)
- Reentry velocity (km/s)
- Max. deceleration (m/s²)
- Heat absorption (MJ)
- Range (km)
How Does this Translate into Challenges During Re-Entry into the Atmosphere?

Large frictional forces on re-entry lead to

- deceleration up to $500 \text{ m/s}^2 = 51 \text{ g}$
 ~ car with 70mph into concrete wall
 g-forces can be lethal if $> 25 \text{ g}$

- 200 MJ of energy is enough to heat W76 warheads to the melting temperature of iron $\sim 1540 \text{ C}$!
Missile Range–Accuracy Tradeoff

CEP: circular error probable (random error)
50% of missiles land within CEP from target
93% within 2 x CEP from target

A. Karp, Ballistic Missile Proliferation, sipri, 1996, p. 112
Ballistic Missile Accuracy

Distribution of RV impact points —

CEP: circular error probable (random error)
50% of missiles land within CEP, 93% within 2 x CEP from target
Ballistic Missile Accuracy

The accuracy of a ballistic missile—like the value of any physical quantity—can only be specified statistically.

Important concepts:

• D = total miss distance
• CEP = “circular error probable” (random error)
• B = Bias (systematic error)

Relation —

\[D = (B^2 + \text{CEP}^2)^{1/2} \]

CEP is not a measure of the miss distance. The miss distance is at least as large as the CEP, but can be much larger if there is significant bias.
Ballistic Missile Accuracy

Published CEPs for some ICBMs and SLBMs

<table>
<thead>
<tr>
<th>Missile</th>
<th>CEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td></td>
</tr>
<tr>
<td>MMIII</td>
<td>220 m</td>
</tr>
<tr>
<td>Trident II</td>
<td>100 m</td>
</tr>
<tr>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>SS-18</td>
<td>450 m</td>
</tr>
<tr>
<td>SS-27</td>
<td>350 m</td>
</tr>
<tr>
<td>SS-27 Sickle B</td>
<td>200 m</td>
</tr>
</tbody>
</table>
ICBM Accuracy & Vulnerability

Missile accuracy steadily improved during the Cold War as the result of technological innovation.

As ICBMs become more accurate, they become more vulnerable to attack by the adversary, increasing crisis instability.

Each ICBM and each SLBM was armed with more and more warheads during the Cold War.

As each missile was armed with more warheads, it became a greater threat to the nuclear forces of the adversary and a more attractive target for a pre-emptive or first strike, increasing crisis instability.
Silo-Based Missiles

Vulnerable to attack

- Silo locations are known very accurately
- MIRVed missiles make it possible to launch several warheads against an array of silos

Effect of silo hardness

- Hardening is expensive
- US assumes its silos can withstand 2,000 psi (5 psi will completely destroy a brick house)
- US assumes Russian silos can withstand 5,000 psi (example of ‘worst-case’ analysis)
- To destroy a silo this hard, a 300 kt warhead would have to land within 100 m
Silo-Based Missiles

Effect of missile accuracy

• Theoretically, missile survival is very sensitive to the miss distance D of incoming warheads

• An example, assume
 — 1,000 Minuteman silos are hardened to 2,000 psi
 — Two 1.5 MT warheads are targeted to explode at ground level on each silo

• Computations predict
 — If D = 300 ft, then 20 missiles survive (60 if 5,000 psi)
 — If D = 500 ft, then 200 missiles survive (600 if 5,000 psi)
Sources of Systematic Error

• Gravitational field variations
• Atmospheric drag variations
Gravitational Field Variations

Some possible causes —

- Bumps on the Earth (mountains)
- Mass concentrations (masscons)
- Gravitational pull of the Moon
 (Motion of the Moon changes g by 3 ppm. An error in g of 3 ppm introduces a bias of 300 ft.)

The Earth’s gravitational field is carefully measured over US and R (E-W) test ranges —

- US: Vandenberg to Kwajalein
- R: Plesetsk to Kamchatka and Tyuratam to Pacific

But wartime trajectories would be N-S over pole.
Atmospheric Drag Variations

Some possible sources —

- Jet streams
- Pressure fronts
- Surface winds
 (30 mph surface wind introduces a bias of 300 ft.)

Density of the atmosphere —

- Is a factor of 2 greater in the day than at night
- Varies significantly with the season
- Is affected by warm and cold fronts

Data from military weather satellites and from models of weather over SU targets were reportedly used to update US warheads twice per day
Uncertainties on Silo-Based Missiles

Fundamental uncertainties

• Missile accuracy
• Warhead yield
• Silo hardness

Operational uncertainties

• System reliability
• Wind and weather
• Effects of other warheads (fratricide)
• Extent of ‘collateral damage’
 (‘digging out’ missiles creates enormous fallout)
Probability of destroying ("killing") a missile silo:

- A 10-fold increase of warhead yield Y increases the kill factor K by about a factor of 5.

- A 10-fold decrease in the warhead miss distance D increases the kill factor K by 100.

- For a kill factor of 20, a 10-fold increase in the silo hardness from 300 psi to 3000 psi reduces the probability of silo destruction from about 85% to about 35%.

$$P_K = 1 - e^{-K/f(H)}$$
Counterforce Capabilities

U.S. ICBMs: $K = 107,000$

U.S. Trident II D5: $K = 475,000$

Russia ICBMs: $K = 131,000$

Russia SLBMs: $K = 9,500$
Submarine-Based Missiles

Operational considerations

- Vulnerability depends on size of operational areas, ASW threat, counter-ASW capability
- Ability to survive
- US SSBNs are quieter than Russian SSBNs (but Russia is improving rapidly)
- US leads in anti-submarine warfare (ASW) capability and access to high seas
- Fraction of forces on-station (duration of patrols, time required for repairs)
- System reliability
- Effectiveness of command and control
Submarine-Based Missiles

Effective number of warheads (example) before New START

• United States
 2688 [SLBM warheads]
 x 0.75 [fraction typically on-station]
 x 0.90 [estimated reliability]
 = 1,814 [effective number of warheads]

• Russia
 2384 [SLBM warheads]
 x 0.25 [fraction typically on-station]
 x 0.70 [estimated reliability]
 = 447 [effective number of warheads]

These examples show that many factors other than just the number of warheads are important in comparing the effectiveness of nuclear forces.
Module 5: Nuclear Delivery Systems

Part 5: Nuclear Command and Control
C3I: Command, Control, Communication, Intelligence

Specific goals—

• Provide strategic and tactical warning
• Provide damage assessments
• Execute war orders from National Command Authority before, during, and after initial attack
• Evaluate effectiveness of retaliation
• Monitor development of hostilities, provide command and control for days, weeks, months
Some important aspects and implications —

- Organizational structure of command and control
- Available strategic communications, command, control and intelligence (C^3I) assets
- Vulnerability of strategic C^3I assets to attack

Alert levels — (Defensive Readiness Condition)

DEFCON 5 Normal peacetime readiness
DEFCON 4 Normal, increased intelligence and strengthened security measures
DEFCON 3 Increase in force readiness above normal readiness intelligence and strengthened security measures
DEFCON 2 Further Increase in force readiness
DEFCON 1 Maximum force readiness.
Satellite systems

- Early warning
- Reconnaissance
- Electronic signals
- Weather
- Communication
- Navigation
Response Times for Attack or Breakout

- Automatic launch
- Launch on warning
- Launch under attack
- Launch after attack
- De-alerting
- Arms control
- Disarmament

Risk of accidental nuclear war

Time for decision-making:
- seconds
- minutes
- hours
- days
- weeks
- months
- years
The Threat of Accidental Nuclear War – 20 Dangerous Incidents

1) November 5, 1956: Suez Crisis Coincidence

2) November 24, 1961: BMEWS Communication Failure

4) August-October, 1962: U2 Flights into Soviet Airspace

5) October 24, 1962- Cuban Missile Crisis: A Soviet Satellite Explodes

6) October 25, 1962- Cuban Missile Crisis: Intruder in Duluth

7) October 26, 1962- Cuban Missile Crisis: ICBM Test Launch

8) October 26, 1962- Cuban Missile Crisis: Unannounced Titan Missile Launch

9) October 26, 1962- Cuban Missile Crisis: Malstrom Air Force Base

10) October, 1962- Cuban Missile Crisis: NATO Readiness

Source: www.nuclearfiles.org/kinuclearweapons/anwindex.html
The Threat of Accidental Nuclear War
20 Dangerous Incidents

11) October, 1962- Cuban Missile Crisis: British Alerts
12) October 28, 1962- Cuban Missile Crisis: Moorestown False Alarm
13) October 28, 1962- Cuban Missile Crisis: False Warning Due to Satellite
14) November 2, 1962: The Penkovsky False Warning
15) November, 1965: Power Failure and Faulty Bomb Alarms
16) January 21, 1968: B-52 Crash near Thule
17) October 24-25, 1973: False Alarm During Middle East Crisis
18) November 9, 1979: Computer Exercise Tape
19) June, 1980: Faulty Computer Chip
20) September, 1983: Russian False Alarm
21) November, 1983 Able Archer
21) January, 1995: Russian False Alarm (Norwegian research missile)

Source: www.nuclearfiles.org/kinuclearweapons/anwindex.html
On January 25, 1995, the Russian early warning radar's detected an unexpected missile launch near Spitzbergen. The estimated flight time to Moscow was 5 minutes. The Russian President, the Defense Minister and the Chief of Staff were informed. The early warning and the control and command center switched to combat mode. Within 5 minutes, the radar's determined that the missile's impact would be outside the Russian borders.

The missile was Norwegian, and was launched for scientific measurements. On January 16, Norway had notified 35 countries including Russia that the launch was planned. Information had apparently reached the Russian Defense Ministry, but failed to reach the on-duty personnel of the early warning system.
Possible Risk Reduction Measures

- Put ballistic missiles on low-level alert
- Reduce number of warheads on missiles
- Remove warheads to storage
- Disable missiles by having safety switches pinned open and immobilized
- Allow inspections and cooperative verification

End of Module 5
Flight of a MIRV’d ICBM (Schematic)
Flight of a MIRV’d ICBM (Schematic)

1. The missile launches out of its silo by firing its 1st stage boost motor \((A)\).
2. About 60 seconds after launch, the 1st stage drops off and the 2nd stage motor \((B)\) ignites. The missile shroud is ejected.
3. About 120 seconds after launch, the 3rd stage motor \((C)\) ignites and separates from the 2nd stage.
4. About 180 seconds after launch, 3rd stage thrust terminates and the Post-Boost Vehicle \((D)\) separates from the rocket.
5. The Post-Boost Vehicle maneuvers itself and prepares for re-entry vehicle \((RV)\) deployment.
6. The RVs, as well as decoys and chaff, are deployed during backaway.
7. The RVs and chaff re-enter the atmosphere at high speeds and are armed in flight.
8. The nuclear warheads detonate, either as air bursts or ground bursts.
US ICBMs – 1

current land based
US ICBM
US and Russian SLBMs