Module 8: Nuclear Arms Control
U.S. Foreign Aid to Israel

Jeremy M. Sharp
Specialist in Middle Eastern Affairs
December 22, 2016

Including Israel’s multi-tier missile + rocket defense
Multi-Tiered Missile and Rocket Defense

In addition to the supply of U.S.-origin Hawk and Patriot missile batteries to Israel,48 U.S.-Israeli missile defense cooperation has evolved in the past several years to include the co-development of several systems. Israel also has developed its own missile defense programs without U.S. collaboration.

The following section provides background on Israel’s four-layered active defense network: Iron Dome (short range), David’s Sling (low to mid-range), Arrow II (upper-atmospheric), and Arrow III (exo-atmospheric).

Iron Dome

Iron Dome is a short-range anti-rocket system developed by Israel's Rafael Advanced Defense Systems and originally produced in Israel. Iron Dome's targeting system and radar are designed to fire its Tamir interceptors only at incoming projectiles that pose threats to the area being protected (generally, strategically important sites, including population centers); it is not configured to fire on rockets headed toward unprotected areas. Iron Dome batteries can be moved to respond to changes in Israeli areas subject to threat.
David’s Sling

In August 2008, Israel and the United States officially signed a “project agreement” to co-develop the David’s Sling system. David’s Sling (aka Magic Wand) is a short/medium-range system designed to counter long-range rockets and slower-flying cruise missiles fired at ranges from 40 km to 300 km, such as those possessed by Hezbollah in Lebanon, Iran, and Syria. David’s Sling is designed to intercept missiles with ranges and trajectories for which Israel’s Iron Dome and/or Arrow ballistic missile interceptor is not optimally configured. It is being developed jointly by Rafael Advanced Defense Systems and Raytheon. David’s Sling uses Raytheon’s Stunner missile for interception, and each launcher can hold up to 16 missiles. Once the United States and Israel reach a co-production agreement for the Stunner, the interceptors may be built in Tucson, Arizona by Raytheon.

In December 2015, David’s Sling successfully passed its final series of pre-production tests at a test facility in the Negev desert. In March 2016, the Israeli Air Force began a months-long process to integrate David’s Sling into its multi-layered missile defense architecture.
The Arrow and Arrow II

Since 1988, Israel and the United States have been jointly developing the Arrow Anti-Missile System. The Arrow is designed to counter short-range ballistic missiles. The United States has funded just under half of the annual costs of the development of the Arrow Weapon System, with Israel supplying the remainder. The Arrow II program (officially referred to as the Arrow System Improvement Program or ASIP), a joint effort of Boeing and Israel Aerospace Industries (IAI), is designed to defeat longer-range ballistic missiles. One Arrow II battery is designed to protect large swaths of Israeli territory.

The Arrow III, made (like the Arrow II) by Israel Aerospace Industries (IAI) and Boeing, is expected to be deployed by 2017. In July 2010, the United States and Israel signed a bilateral agreement (The Upper-Tier Interceptor Project Agreement) to extend their cooperation in developing and producing the Arrow III, including an equitable U.S.-Israeli cost share.
Table 2. Defense Budget Appropriations for U.S.-Israeli Missile Defense: FY2006-FY2016 Request

(CURRENT $ IN MILLIONS)

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Arrow II</th>
<th>Arrow III (High Altitude)</th>
<th>David's Sling (Short-Range)</th>
<th>Iron Dome</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2006</td>
<td>122.866</td>
<td>—</td>
<td>10.0</td>
<td>—</td>
<td>132.866</td>
</tr>
<tr>
<td>FY2007</td>
<td>117.494</td>
<td>—</td>
<td>20.4</td>
<td>—</td>
<td>137.894</td>
</tr>
<tr>
<td>FY2008</td>
<td>98.572</td>
<td>20.0</td>
<td>37.0</td>
<td>—</td>
<td>155.572</td>
</tr>
<tr>
<td>FY2009</td>
<td>74.342</td>
<td>30.0</td>
<td>72.895</td>
<td>—</td>
<td>177.237</td>
</tr>
<tr>
<td>FY2010</td>
<td>72.306</td>
<td>50.036</td>
<td>80.092</td>
<td>—</td>
<td>202.434</td>
</tr>
<tr>
<td>FY2011</td>
<td>66.427</td>
<td>58.966</td>
<td>84.722</td>
<td>205.0</td>
<td>415.115</td>
</tr>
<tr>
<td>FY2012</td>
<td>58.955</td>
<td>66.220</td>
<td>110.525</td>
<td>70.0a</td>
<td>305.700</td>
</tr>
<tr>
<td>FY2013 After Sequestration</td>
<td>40.800</td>
<td>74.700</td>
<td>137.500</td>
<td>194.0</td>
<td>447.000</td>
</tr>
<tr>
<td>FY2014</td>
<td>44.363</td>
<td>74.707</td>
<td>149.712</td>
<td>460.309 (includes supp)</td>
<td>729.091</td>
</tr>
<tr>
<td>FY2015</td>
<td>56.201</td>
<td>74.707</td>
<td>137.934</td>
<td>350.972</td>
<td>619.814</td>
</tr>
<tr>
<td>FY2016</td>
<td>56.519</td>
<td>89.550</td>
<td>286.526</td>
<td>55.000</td>
<td>487.595b</td>
</tr>
<tr>
<td>FY2017 Request</td>
<td>10.831</td>
<td>55.793</td>
<td>37.211</td>
<td>42.000</td>
<td>145.835</td>
</tr>
</tbody>
</table>
Nature and Goals of Arms Control
Arms Control in the area of chemical warfare

First treaty: the 1925 Geneva Protocol

bans the use of chemical weapons.

Current: Chemical Weapons Convention (CWC)

Entered into force on April 29th 1997, Duration: Indefinite
Bans use & possession of chemical weapons
Defines time table for destruction of chemical weapons

Original deadline for destruction of all chemical weapons set in CWC:
April 29th 2012 – Lybia, Russia and US did not reached this goal.

2017 OPCW report: 69,610 metric tons, or 96.27% of all chemical weapons have been destroyed.
CWC Signed & Ratified by 190 Countries

Implementation is monitored by the Organization for the Prohibition of Chemical Weapons located at The Hague, Netherlands.

OPCW was awarded the Nobel Peace Prize 2013

CWC provided framework to deal with crisis that arose from the use of chemical weapons by the Government of Syria in 2013.

The destruction of the Syrian chemical weapon stockpile is being monitored by the OPCW. On October 20th 2014 the OPCW announced that 98% of the Syrian chemical weapon stockpile has been destroyed.
Figure 1: Eliminating Syria’s Chemical Arsenal

The authority for the international project to destroy Syria’s chemical arsenal came in September 2013 from a plan that was formulated by the Executive Council of the Organisation for the Prohibition of Chemical Weapons and endorsed by the UN Security Council. That plan was based on a U.S.-Russian framework agreement. In large part because of the ongoing civil war in Syria, the plan contemplated the removal of much of Syria’s declared arsenal of 1,300 metric tons of chemical weapons material for destruction outside the country.

The removal was marked by delays, which Syria attributed to the hazard from rebel forces. The last chemicals left Syria on June 23, 2014, months behind schedule. By the end of October, however, 98 percent of the declared stockpile, including all of the most dangerous chemicals, had been destroyed.

Destroying Chemicals in Europe and the U.S.
- After the transfer to the Cape Ray at Gioia Tauro, the Ark Futura went to the United Kingdom, where it offloaded about 150 metric tons of chemical weapons material for incineration at two sites in that country.
- The Taiko, a Norwegian freighter, went from Syria to Finland, where it delivered about 130 metric tons of chemicals for incineration.
- After the Finland stop, the Taiko traveled to Texas with several hundred metric tons of chemicals destined for incineration there.
- After completing the hydrolysis of the Syrian chemicals, the Cape Ray delivered to Germany 350 to 400 metric tons of effluent from the neutralization of the sulfur mustard aboard the U.S. ship.
- The Cape Ray then continued on to Finland, which is incinerating the 6,000 metric tons of effluent from the neutralization of the DF.
- The ship returned to Virginia in mid-September.

Collecting Chemicals in Latakia, Syria
- Syrian chemical weapons agents were brought to the port city of Latakia in northwestern Syria from about 20 sites across the country.
- Syria was responsible for the transport of the chemicals to Latakia. Some of the equipment used in the operation was provided by other countries.
- From Latakia, an international convoy carried the chemicals away for destruction outside Syria.
- Syria’s stockpile of sarin precursors, which constituted about 10 percent of the declared arsenal of 1,300 metric tons, was destroyed within the country.

Destroying Chemicals at Sea
- On July 7, the Cape Ray, operating in international waters in the Mediterranean Sea, began neutralizing the chemicals transferred from the Ark Futura.
- The chemicals—the sarin precursor DF and a small amount of sulfur mustard—were neutralized in two mobilo hydrolysers until the Cape Ray was carrying.
- The neutralization was completed on August 17, well ahead of the announced schedule for that task.

‘Transloading’ in Gioia Tauro, Italy
- The Danish freighter Ark Futura carried 250 metric tons of Syrian chemical weapons agents from Latakia to the Italian port of Gioia Tauro.
- At Gioia Tauro, 860 metric tons of chemicals were transferred to the MV Cape Ray, a U.S. vessel.
- The transfer was completed on July 2.
The Syrian chemical weapons destruction process in 2013 and 2014 has been a remarkable example of successful multilateral disarmament operations in the middle of a costly and dangerous civil war.

It has removed not only the threat of mass-casualty attacks with deadly nerve agents against soldiers and civilians in the Syrian civil war, but also the threat of chemical weapons use against neighboring countries.

Furthermore, it has set a precedent for Egypt and Israel, the other two suspected chemical weapons possessor states in the region, to join the near-universal CWC. The complete abolition of chemical weapons in the Middle East will be an important confidence-building measure for negotiations of a zone free of weapons of mass destruction in the region, as proposed by the 2010 Nuclear Nonproliferation Treaty (NPT) Review Conference.
Understanding Arms Control

Arms Control is one tool in the toolbox of international relations, which also includes

- Diplomacy
 - Bilateral
 - Multilateral (including the United Nations)

- Other security instruments
 - Political
 - Economic
 - Technological
 - Environmental

- Military Force
 - Self defense

(If all else fails and action is justifiable within legal & ethical considerations)
Understanding Arms Control

Arms Control is not the antithesis of military power.

- It was often portrayed as that during the Cold War
- It is the same as (partial) disarmament
- It is not the answer to all problems

Arms Control is difficult and imperfect.

- So also is diplomacy and the use of military force
- The right questions to ask are, “Is there a better way? A cheaper way? A more effective way? A less risky way?”
Unilateral reciprocal steps without treaties are possible but rarely successful in the long run.

Treaties have been more successful.

Arms control is a multilateral act —

- Two or more parties (usually states) are involved
- An agreement is possible *only* if all the parties involved see it as in *their* best interests
- If conditions change, interests can change and one or more parties may view an earlier agreement as no longer in their best interest
Goals of Nuclear Arms Control

There are many possible motivations for controlling nuclear arms:

- Reduce the threat of nuclear weapons including their use in war or in terrorist attacks
- Reduce the cost of a nuclear arms race
- Enhance international security and stability
- Facilitate international cooperation
Nuclear Arms Control

Most nuclear arms control is about preventing and reversing or, at least, slowing nuclear proliferation, i.e., the spread of nuclear weapons and nuclear weapons capability

- Horizontal proliferation: the spread of NWs to additional states (or non-state actors)

- Vertical proliferation: the increase in the number and/or capability of the NWs of states that already have them

- Vertical and horizontal proliferation are inherently coupled

- The ultimate motivation for pursuing nuclear arms control is that Nuclear Weapons threaten the very existence of individual nations and human civilization.
Overview of Nuclear Arms Control Treaties
Key Nuclear Arms Control Agreements and Year Signed (Important)

• 1963 Limited Test Ban Treaty (LTBT)
• 1968 Nuclear Nonproliferation Treaty (NPT)
• 1972 Strategic Arms Limitation Treaty (SALT) = Anti-Ballistic Missile Treaty (ABMT)
 + Interim Agreement on Offensive Forces
• 1974/1980 Threshold Test Ban Treaty (TTBT)
 + Peaceful Nuclear Explosions Treaty (PNET)
• 1987 Intermediate-Range Nuclear Forces Treaty (INFT)
• 1991 Strategic Arms Reduction Treaty (START)
 + 1992 Lisbon Protocol regarding successor states
• 1996 Comprehensive Test Ban Treaty (CTBT), not in force yet
• 2002 Strategic Offensive Reductions Treaty (SORT)
• 2011 New START
Other Important Nuclear Arms Control Agreements and Year Signed

- 1959 Antarctic NWFZ Treaty
- 1967 Latin America Nuclear-Weapons-Free Zone Treaty (Tlatelolco)
- 1968 African NWFZ Treaty (Treaty of Pelindaba)
- 1970 Outer Space Treaty
- 1971 Seabed Treaty
- 1979 Strategic Arms Limitation Treaty II (SALT II), never ratified
- 1985 South Pacific NWFZ Treaty (Treaty of Rarotonga)
- 1987/1993 Missile Technology Control Regime (MTCR)
- 1994 Agreed Framework between US and DPRK
- 1995 South-East Asian NWFZ Treaty (Treaty of Bangkok)
- 1997 Strategic Arms Reduction Treaty II (START II), never ratified
- 2002 International Code of Conduct against Ballistic Missile Proliferation (ICOC)
History of Strategic Nuclear Arms Agreements

• 1972: Nixon — Strategic Arms Limitation Treaty (SALT) and Anti-Ballistic Missile Treaty (ABMT), approved
• 1979: Carter — Second Strategic Arms Limitation Treaty (SALT II), withdrawn
• 1987: Reagan — Intermediate-Range Nuclear Forces Treaty (INF), approved
• 1991: Reagan & Bush I — Strategic Arms Reduction Treaty (START I), approved
• 1992: Bush I — Lisbon Accord, approved
• 1993: Bush I & Clinton — Strategic Arms Reduction Treaty II (START II), Ratified in 1996 in Senate, Senate did not ratify 1997 START II addendum
 Ratification by Russia in 2000 conditional on US ratification of addendum
• 1996: Clinton — Comprehensive Test Ban Treaty (CTBT), Senate did not ratify
• 2002: Bush II — Strategic Offensive Reductions Treaty (SORT), approved
• 2010: Obama — New Strategic Arms Reduction Treaty (New START), approved
News

Module 8: Nuclear Arms Control

Midterm is in the grade book

Extra Credit Assignment

Chemical Security: What Is It and Why Does It Matter for Arms Control?

April 19, 2023 | 1:00pm | Arthur Chilton Seminar Room, Armory, Room 345 (Lunch seminar with pizza) and on Zoom
Nuclear Arms Control

The Nature of Treaties
The Nature of Treaties

• A treaty is a written agreement between two or more sovereign states in which the parties involved agree to abide by certain specified procedures and standards of conduct.

The Nature of Treaties

• **Signature:** Signature by an authorized State representative (*need not be the highest official*).

• **Ratification:** Each of the participating parties go through a domestic “ratification” process that is designed to show that the state agrees to be bound by the treaty, independent of future changes in political leadership.

• **Entry into Force:** The treaty specifies the conditions for its entry into force, typically based on the number of ratifying states.

 Default: Ratification by all negotiating states.
The Nature of Treaties

Member State Status

• During negotiations: Negotiating State
• After signature: State Signatory
• After ratification: Ratifying State
• After entry into Force: State Party
The Nature of Treaties

Obligations prior to entry into force and for withdrawal —

• According to the Vienna Convention on the Law of Treaties, a state that has signed a treaty is bound to it and is obliged to refrain from acts which would defeat the object and purpose of a treaty even if it has not yet ratified the treaty.

• A state can change its mind before ratification. After announcing to the world that it is withdrawing its signature, it is no longer bound.

• After ratification, a state is obligated to announce to the world in advance that it plans to withdraw from a treaty.
 —The treaty specifies the advanced notice required.
 —In arms control treaties this is referred to as the “Supreme National Interest” clause.
Traditionally, treaties are “deposited” at one or more locations (depository) where they may be studied by any interested party

- It is rare to have “secret” treaties or secret parts of treaties in the arms control context
- International knowledge and support is usually one of the reasons states enter into treaties

The Vienna Convention on the Law of Treaties clarifies a wide range of issues associates with treaties of all types

- Interpretation of language
- Norms of conduct not explicitly prescribed in the treaty
- Traditional practice (common sense) also applies
The Nature of Treaties

A written agreement does not have to have the word “treaty” in its title to be a treaty

• What is required are the features described above

• The word “Convention” is a common substitute for the word “Treaty” in titles, but taken alone “Convention” does not itself imply the agreement is a treaty

• Examples: Biological Weapons Convention, Chemical Weapons Convention

• The word “Protocol” is used in many different ways in the international context
 — to describe a treaty in itself
 — to describe a part of or an amendment to a treaty
 — to describe something less than a treaty

An “Executive Agreement” is an agreement between the heads of two (or more) states and is not legally binding in the framework of the Vienna Convention. However, executive agreements are regulated under US law and are an alternative form to enter international agreements for the US.
The Nature of Treaties

A treaty typically has an “official” name and a “familiar” name (a nickname), which often includes the geographical location where it was negotiated or signed.

The number of parties to treaties can vary

- Distinguish “bilateral”, “trilateral” and “multilateral” treaties
- Goal for “universal” treaties

The duration of treaties can vary

- “Indefinite duration” means forever (for all time)
- A treaty can also be for only a specified duration
Nuclear Arms Control During the Cold War
First Success: The 1963 Limited Test Ban Treaty

- Was agreed by the U.S. and Soviet Union in 1963
- Considerations started in 1954, originally aiming at a comprehensive test ban treaty
- Built on 8 years of work beginning with the Eisenhower administration
- Was negotiated by Averill Harriman, Kennedy’s special ambassador, in face-to-face negotiations with Nikita Khrushchev in only 10 days in July–August 1963
- US, USSR, and UK were the original parties
- Almost all states of the world are now parties to the LTBT
The 1963 Limited Test Ban Treaty

Provisions —

• A two-page treaty (see the PHYS-280 documents web page)

• Bans “any nuclear weapons test explosion, or any other nuclear explosion” “in the atmosphere; beyond its limits, including outer space; or underwater”

• “in any other environment if such explosion causes radioactive debris to be present outside the territorial limits of the State…”

• Has no verification provisions: verification is easy using existing surveillance technologies because of the unique signatures of a nuclear explosion
The 1963 Limited Test Ban Treaty

• Came about largely as a response to world-wide public outcry against fallout from atmospheric testing.

• Role of scientists (Nobel Peace Prize Linus Pauling).

• Original goal eliminating all nuclear testing failed because of internal political opposition within the three countries and because of controversy over whether underground tests could be detected (this question was again used by opponents of the CTBT as an excuse not to ratify it in the U.S. Senate).

• Was the first sign of hope for controlling nuclear weapons, but in practice was primarily an environmental protection measure (radioactivity from nuclear testing restricted to the underground).
Nuclear-Weapon-Free Zones

- NWFZs are in force on the territory of 110 countries
- Some are single-state NWFZs (Austria, Mongolia)
- In preparation: Central Asian Nuclear-Weapon-Free Zone
- Almost the whole southern hemisphere is covered by NWFZs
Other “Nuclear Free Zones”

• 1967 Outer Space Treaty
 — No basing of NWs in orbit about earth
 — Moon and other celestial bodies (planets, asteroids, etc.)
 nuclear free zones
 — Numerous other restriction on state behavior that are
 unrelated to nuclear weapons

• 1971 Seabed Treaty
 — No basing, storage, of testing of NW (or other WMD)
 on seabed, ocean floor, and subsoil thereof
 — Does not apply to coastal waters (12 mile limit)
 — Modeled after Outer Space Treaty
Almost the whole southern hemisphere is covered by Nuclear-Weapon-Free Zone Treaties.
Latin American Nuclear Free Zone (LANFZ) Treaty (1967)

- Also known as the “Treaty of Tlatelolco,” the area of Mexico City where the diplomats assembled
- Signed in 1967, is of indefinite duration
- Came about through the efforts of five Latin Presidents (Bolivia, Brazil, Chile, Ecuador, and Mexico)
- Motivation came from the 1962 Cuban missile crisis
- The 24 Latin American signatories agree to not develop or introduce NWs
- The four countries outside of region (US, UK, Neth, Fr) agree in a signed protocol to apply the provisions to their territories in LA
- All five NPT NW states agree in second protocol not to introduce NWs into region of LA
Nuclear-Weapon-Free Zones

- **1959 Antarctic Treaty** (first post-WWII treaty)
 - Entire continent a nuclear free zone
 - Numerous other restrictions on state behavior that are unrelated to nuclear weapons
- **1985 South Pacific NWFZ (Treaty of Raratonga)**
- **1995 South-East Asian NWFZ (Treaty of Bangkok)**
- **1996 African NWFZ (Treaty of Pelindaba)**
Horizontal Nuclear Non-Proliferation

1955: Atoms for Peace

1st video

1957: International Atomic Energy Agency (IAEA) formed

Verification: Nuclear Safeguards

• The initial safeguards agreement did not provide full-scope safeguards

• Full-scope safeguards came after the 1968 NPT (in the Model Safeguards Agreement of 1971)

(https://www.iaea.org/newscenter/multimedia/videos/iaea-focus)

2nd video
Example: Inspection of the Nuclear Program in Iran by the IAEA During P5+1 Negotiations

IAEA
Atoms for Peace

Board of Governors

GOV/INF/2014/10
Date: 17 April 2014
Restricted Distribution
Original: English

For official use only

Status of Iran’s Nuclear Programme in relation to the Joint Plan of Action

Report by the Director General
Building Trust: Inspection of the Nuclear Program in Iran by the IAEA

1. As foreshadowed in GOV/2014/2, this report provides information on the status of the Islamic Republic of Iran’s (Iran’s) nuclear programme in relation to the “voluntary measures” that Iran has agreed to undertake as part of the Joint Plan of Action (JPA) agreed between the E3+3 and Iran on 24 November 2013.¹ According to the JPA, the first step would be time-bound (six months) and renewable by mutual consent. The JPA took effect on 20 January 2014.²

2. The Agency confirms that since 20 January 2014, Iran has:

 i. not enriched uranium above 5% U-235 at any of its declared facilities;

 ii. not operated cascades in an interconnected configuration at any of its declared facilities;

 iii. completed the dilution – down to an enrichment level of no more than 5% U-235 – of half of the nuclear material that had been in the form of UF₆ enriched up to 20% U-235 on 20 January 2014;³

Example, how arms control and existing instruments of arms control can create trust and can be used to provide valuable options in resolving international conflict.

It is important to remember that well concerted sanctions, the related diplomatic efforts and the strong US military presence have played a key role in bringing Iran to the table.

This effort resulted in the JCPO: Joint Comprehensive Plan of Action
News

Module 8: Nuclear Arms Control
Germany Quits Nuclear Power, Ending a Decades-Long Struggle

The last three plants in Germany are scheduled to shut down by Saturday, while other European countries are looking to expand nuclear energy.

It began as a movement of pacifists chaining themselves to fences outside nuclear power plants. Five decades later, the effort to close German nuclear power plants will end with echoes of the Cold War era in which it began, as Russia's war in Ukraine is a reminder of both the risks and promise of nuclear energy.

Germany's three remaining reactors will be shut down by Saturday — ending nuclear power generation in Europe's largest economy. But it comes as the continent grapples with questions over whether it can secure enough energy to drive its economies and keep homes warm while also reaching ambitious climate targets.

Germany's move makes it an outlier in much of the industrialized world. Britain, Finland and France are doubling down on nuclear energy as a source of reliable electricity and extremely low carbon emissions. Last year, Poland signed with Westinghouse Electric to build its first nuclear power plant, some 200 miles east of the German border.

In the United States, the Biden administration is backing technology to build a new generation of smaller nuclear reactors as a tool of “mass decarbonization.”
The 1968 Nuclear Non-Proliferation Treaty

- Signed in 1968 (Johnson Administration), went into force in 1970, had 25-year term
- Renewed for an *indefinite* term in May 1995
- State Parties meet every 5 years to review effectiveness of treaty & propose improvements of implementation
- **Divides states of the world into two classes**
 - Nuclear Weapons States (NWS) *defined* by treaty as states that have tested before 1968: US, USSR/R, UK, Fr, PRC only
 - Non-Nuclear Weapons States (NNWS)
- **Grand bargain**
 - NWs states agree to share peaceful applications of nuclear technologies with NNS + commitment to pursue reduction of nuclear arsenals
 - NNW states agree not to develop or acquire NWs
- De-facto NWS Israel, India, Pakistan, and North Korea are the only non-signatories
- Inclusion of Israel, India, Pakistan, and North Korea as NPT NWS would require amending the treaty, which would be tantamount to re-negotiating it; such a negotiation is generally regarded as highly undesirable
Iraq, Libya, Iran, and N. Korea were/are problematic signatories

• Post Iraq War searches provided definitive assurance that the Iraqi NW program is eliminated

• Libya ended nuclear weapons program

• North Korea withdrew from the NPT, launched a NW program (U enrichment and Pu reprocessing), declared possession of nuclear weapons in March 2005 and tested them in 2006, in 2009, in 2013 and in 2016. Accession of Kim Jong-un in 2011 has lead to present crisis with significant uncertainty with regards to North Korea’s intentions.

• Concerns that Iran may be close to acquiring nuclear weapons continue to exist.
The 1968 Nuclear Non-Proliferation Treaty

The 1995 NPT Review and Extension Conference agreed on a document called “Principles and Objectives on Nuclear Non-Proliferation and Disarmament”

The 2000 NPT Five-Year Review produced an agreed list of the most relevant next steps (13 steps)

The 2005 NPT Five-Year Review failed to produce a final communiqué

The 2010 NPT Five-Year Review was more successful

The 2015 NPT Five-Year Review failed to produce a final communiqué over resistance of NWS to advance disarmament, including schedule for negotiations for a middle east NWFZ.
Monitoring of NPT: IAEA Safeguard System

- IAEA safeguards system: aims to detect and deter diversion of nuclear materials used for civilian purposes to materials used to make weapons.

- IAEA currently monitors more than 900 facilities in more than 70 nations.
The 1997 NPT Additional Protocol

- Iraq case 1991: inability to detect clandestine nuclear activities suggests that IAEA nuclear safeguards are not comprehensive enough.

- 93+2 program to enhance efficiency and effectiveness of nuclear safeguards ➔ broader range of facilities, environmental sampling, inspections with short term notice

- Model for Additional Protocol (INFCIRC-540) in 1997

- As of December 2010 signed by 139 states, in force in 104 out of 189 Parties to the NPT
Limits on SU and US Nuclear Weapons Systems

• Meaningful limitations on nuclear weapons systems proved difficult to achieve during the Cold War

• The nuclear arms race was driven by intense fear and became deeply ingrained due to many different factors
 — Competition and distrust between the two superpowers
 — Complications created by the NW programs of UK, Fr, and PRC
 — Domestic political, institutional, and economic forces, which drove the arms race in each of the NW states
 — The first limits on NW systems were achieved in 1972 as a result of the SALT (Strategic Arms Limitation Talks) negotiations during the first Nixon administration
 — Secretary of State Henry Kissinger was the architect, chief negotiator, and super salesman of the SALT-I Treaty
The first Strategic Arms Limitation Treaty (SALT-I) had two parts, one important, the other minor —

• The ABM Treaty (ABMT) was the important agreement

• The “interim agreement on offensive strategic nuclear delivery systems” (R > 5,500 km = 3,400 miles) was a minor, temporary agreement

• However, the parties could not agree on one without the other, because both parties (US and USSR) agreed that limitations on offensive nuclear delivery systems would be impossible without limitations on defensive systems
The 1972 ABM Treaty

—Each party agrees not to deploy any defensive system of nationwide scope against *strategic* ballistic missiles

—Each party agrees not to develop the *basis* for a nationwide ABM system

—Two limited deployments permitted (100 interceptors)
 »Defend national capital (Soviets were deploying this)
 »Defend single ICBM field (US deploying this)
 »Reduction to one of the above sites by a 1974 Protocol

—No prohibition on defenses against non-strategic ballistic missiles or cruise missiles
The SALT I Interim Agreement

- Bilateral agreement; UK had ceased to be a major player, and progress would have been impossible if FR and PRC were at the table

- Established a *five-year freeze* at existing levels of *nuclear delivery systems*; those in production allowed to be deployed

- No reductions required on either side

- Parties pledge to conduct follow-on negotiations for more comprehensive measures “as soon as possible”. The Interim Agreement resulted in unequal numbers in US and USSR triads—led to strong objections in US Senate.

- The opportunity to ban MIRVed ICBMs and MIRVed SLBMs was not considered in the negotiations which is regarded by many as a serious mistake in Cold War arms control

- There was long delay before a true treaty (SALT-II) on offensive system was reached in 1979 near the end of the Carter Administration.

- SALT-II was never ratified and never in force
The SALT II Treaty

- A small step forward was made in the Ford Administration: the 1974 Vladivostok Agreement

- An agreement (“SALT-II”) was completed in Carter Administration after prolonged negotiations in 1979

- Carter withdrew SALT-II from consideration by the U.S. Senate in January 1980, to avoid its rejection (Soviet invasion in Afghanistan). Both sides followed the terms of the treaty; this lasted until 1986

- In 1986 President Reagan declared that the U.S. would no longer be constrained by the terms of the Treaty.

- Basic structure:
 - Limit of 2250 total number of SNDVs by 1981
 - Sub-limit on number of MIRVed missiles and Heavy Bombers (HB) with cruise missiles
 - Limit on number of warheads on ICBMs, SLBMs and HBs
 - Numerous other sub-limits and restrictions

The Intermediate Nuclear Forces (INF) Treaty

• Intermediate-Range Nuclear Forces (INF) Treaty was signed on December 8, 1987; entered into force in 1988

• Negotiations started 1981

• Bilateral (USA-USSR) + West German unilateral declaration

• Basic structure:
 — Total global ban of a whole class of ground-based nuclear weapons
 — Applies to delivery systems with a range between 500 and 5,500 km
 — Disarmament by destruction of in total 2,695 missiles
 Soviet Union: 1,836 missiles
 USA: 859 missiles
 — Complete elimination within 3 years (included cruise missiles)
Arms Control
• 1991 Strategic Arms Reduction Treaty Provisions
 — Negotiations began in Reagan Administration in 1982; Gorbachev was in power in the Soviet Union
 — Treaty signed in July 31, 1991 (Bush Administration)
 — Five months later Soviet Union dissolved
 — Treaty contains a of launcher (SNDV) limits and warhead limits (7 year term for reduction)
 — WH limits expressed in terms of “accountable war heads” (AWHs)
 » 1,600 deployed ICBMs, SLBMs and HBs
 » 6,000 total AWHs
 – sublimit: 4,900 AWHs on ICBMs and SLBMs
 – sublimit: 1,500 on Heavy ICBMs (Soviet SS-18s)
 – sublimit: on mobile ICBMs
 – Total ballistic missile “throw-weight” limited to 3,600 metric tons
The START Treaty (cont’d)

— Was the first treaty to require actual *reductions* of strategic nuclear forces

— Counting rules specified for each type of SNDV

 » HB equipped with bombs and short-range attack missiles (SRAMs) count as 1 AWH

 » HB with ALCMs count as 10, 16, or 20 AWHs

— Treaty duration of 15 years; renewable for additional 5-year terms

— Verification by National Technical Means (NTM) plus cooperative measures

— Entry into Force: Dec 5, 1994 after the “Lisbon Protocol” was signed and ratified

— Expired in December 2009 (second Bush administration made no effort to extend it or put in place a follow-on treaty)
(I) 1989–2000: Nuclear Arms Control in the Post-Cold War Era (Bush I and Clinton)

1992 Lisbon Accord
1993 START II
1996 CTBT
The 1992 Lisbon Protocol

Following the end of Soviet Union as political entity, something had to be done to determine who had successor state responsibility for treaties signed by USSR

—1992 Lisbon Accord (Protocol to START-I and ABM Treaty)

» Russia, Belarus, Kazakhstan, Ukraine and US signatories

» Russian the successor nuclear weapon state under NPT

» Belarus, Kazakhstan and Ukraine to sign NPT as non-nuclear states (and eliminate all NW on their territories)

» Russian bound by START-I obligations

» Ukraine was the last of the newly independent states to complete all the necessary steps of nuclear disarmament

» Budapest Memorandum of 1994: Russia, US, UK provide security assurances to the Ukraine.
START II

• Bush-Yeltsin signed in Moscow January 3, 1993

• Strategic Nuclear Delivery Vehicle (SNDV) ceiling of 1,600 in START-I unchanged

• Total warhead ceiling reduced to 3,000–3,500

• Warhead counts
 — ICBM + SLBM WH ceiling dropped
 — MIRVed ICBMs completely forbidden
 — All Heavy ICBM (SS-18s) eliminated
 — SLBM WH ceiling of 1,700–1,750 added
 — Mobile ICBM WH ceiling of START-I left at 850

• Warheads downloaded from MIRVed missiles may not be restored

• To remain in force as long as START is in force (December 2009)
START II (cont’d)

• US agreed to help Russians with destruction costs and technologies

• Entry into force in two phases with initial dates
 — Phase 1 complete 7 years after START signed
 — Phase 2 complete in 2003
 — Phase 2 deadline later extended to 2007

• Ratified by US in 1996, but US did not ratify 1997 protocol extending implementation, ABM Treaty succession, and agreement clarifying demarcation line between strategic and theater ballistic missile defenses

• Russian delayed ratification over concerns of EU and NATO expansion in Eastern Europe. When finally ratified: subject to the provision that the US remain bound by the ABM Treaty.
START III Talks

- During period 1993–2000 when START II was signed but not in force, major changes were taking place in Russia

- Russia repeatedly expressed interest in WH limits lower than START II limits

- Limit of 2,000-2,500 WH informally agreed between Clinton and Yeltsin

- Russians proposed limits of 1,500 WH

- Some on US side proposed 1,000 WHs (minimum deterrence)

- Verifiable destruction of WHs to be included

- Other transparency measures explored

- Never any formal negotiations

- Lost opportunity of a decade?
History of Test Ban Treaties

- Partial TBT:
 Signature: Aug. 5, 1963
 Entry into Force: Oct. 10, 1963

- Threshold TBT:
 Signature: July 3, 1974
 Entry into Force: Dec. 1, 1990

- Peaceful Nuclear Explosions Treaty:
 Signature: May 28, 1976
 Entry into Force: Dec. 11, 1990

- Comprehensive TBT:
 Signature: Sep. 26, 1996
 Entry into Force: —
Last Extra Credit Opportunity:

Ethical Foundations of War
Professor Colleen Murphy, Joslin Professor of Law, UIUC
ACDIS Sandia Seminar
Wednesday April 26th, Room 345 Armory

https://illinois.zoom.us/j/88187002100?pwd=MVFTekdxMitXVnc5NTB2TWh6dVB2Zz09

News

Module 8: Nuclear Arms Control cont’d
South Korean president Yoon Suk Yeol is set to receive a warm welcome in Washington this week, spending two days with his US counterpart Joe Biden on a state visit that will underline Seoul’s position on the front lines of US economic and security concerns in Asia. South Korea’s manufacturing muscle and expertise in semiconductors and electric-vehicle batteries make the country a central part of the Biden administration’s push to reduce dependence on China in critical technologies. The large US military presence in South Korea also underscores Seoul’s role in maintaining Washington’s security posture in east Asia, particularly as North Korea’s weapons programme gains increasing sophistication. But the pomp of the state visit, which will include a summit on Wednesday before Yoon addresses a joint session of Congress a day later, also indicates Washington’s acknowledgment of Seoul’s concerns about the intensifying economic confrontation between the US and China, as well as a growing North Korean nuclear threat.
Another source of mounting anxiety in Seoul to be addressed this week is North Korea’s rapidly advancing weapons programme. Pyongyang is developing lower-yield tactical and battlefield nuclear weapons that could be used to target its southern neighbour, and has adopted a more aggressive nuclear doctrine, prompting South Korea to seek greater security assurances from the US. Karl Friedhoff at the Chicago Council on Global Affairs said North Korea’s increasingly sophisticated threat, coupled with the possibility of former president Donald Trump’s return to the White House in 2025, had “exacerbated longstanding South Korean fears of US abandonment”. In recent months, the US has deployed fighter jets and B-52 bombers capable of carrying nuclear weapons to the Korean peninsula. But Go Myong-hy, a senior fellow at the Asan Institute for Policy Studies in Seoul, said the Yoon administration was seeking more “concrete” assurances. US national security adviser Jake Sullivan on Monday said the presidents would announce “major deliverables” on a range of issues and publish a joint statement on US commitments to South Korea’s defence in response to the rising threat from North Korea.
CTBT

Comprehensive Nuclear Test Ban Treaty

• Negotiated 1993–1996 at the Conference for Disarmament in Geneva

• Opened for signature in September 1996 in New York

• As of February 2019: 185 signatories, 168 ratifications. Of the 44 in Annex II, 8 have not ratified. They are: China, Egypt, India, Iran, Israel, North Korea, Pakistan, and the United States.

• UN General Assembly Resolution in November 1996 created the Preparatory Commission with its Provisional Technical Secretariat in Vienna.

• The International Monitoring System with 321 stations worldwide is under construction. It comprises of seismic, hydroacoustic, infrasound and radionuclide sensors.
Analysis of North Korea’s 2006 Nuclear Test

On October 9, 2006, North Korea announced that it had carried out an underground nuclear test.

One week later, the Office of the Director of National Intelligence confirmed detection of radioactive debris and stated that North Korea had conducted a nuclear explosion with a yield of less than 1 kiloton.

Although the test did not succeed as planned, North Korea might have been testing a lower-yield design.

- How powerful was the explosion?
- Was it a nuclear test?
- If nuclear, was the test successful?

Seismic Detection of North Korea’s 2006 Nuclear Test

Figure 1: Seismic waves recorded during the North Korean nuclear test on October 9, 2006.

Figure 2: Seismic activity since 1990; the star shows the location of the North Korean nuclear test explosion.

Image Credit: DigitalGlobe - ISIS
Image Date: October 13, 2006

Source: Martin B. Kalinowski, Ole Ross, Analysis and Interpretation of the North Korean Nuclear Test, INESAP Information Bulletin No. 27, Dec. 2006
Comparison of Seismic Analyses of the North Korean event on October 9, 2006

<table>
<thead>
<tr>
<th>Institution</th>
<th>Origin Time</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Stations</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC GS RAS²</td>
<td>1:35:26</td>
<td>41.31</td>
<td>128.96</td>
<td>11</td>
<td>4.0</td>
</tr>
<tr>
<td>USGS/NEIC³</td>
<td>1:35:27</td>
<td>41.294</td>
<td>129.134</td>
<td>17</td>
<td>4.2</td>
</tr>
<tr>
<td>IDC (CTBTO)⁴</td>
<td>1:35:28.33</td>
<td>41.2796</td>
<td>129.014</td>
<td>15</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Source: Martin B. Kalinowski, Ole Ross, Analysis and Interpretation of the North Korean Nuclear Test, INESAP Information Bulletin No. 27, Dec. 2006
Nuclear test yields (kt TNT equivalent) and measured body wave magnitude mb

Source: Martin B. Kalinowski, Ole Ross, Analysis and Interpretation of the North Korean Nuclear Test, INESAP Information Bulletin No. 27, Dec. 2006
Wind field trajectories calculated with HYSPLIT from North Korean test site for two starting heights

Source: Martin B. Kalinowski, Ole Ross, Analysis and Interpretation of the North Korean Nuclear Test, INESAP Information Bulletin No. 27, Dec. 2006
HYSLIT model of plume above Sea of Japan 48 hours after explosion averaged from 0–500 m above ground level
North Korea informed China to conduct a nuclear test, with a yield in the range of 4 kilotons.

Such an explosion in hard rock would produce a seismic event with a magnitude of about 4.9 on the Richter scale, uncertainty in seismic magnitude of 0.5: shift in yield by factor 4.6

- The U.S. Geological Survey reported a seismic magnitude of 4.2.
- South Korea’s state geology research center reported magnitude between 3.58 and 3.7, and estimated a yield equivalent to 550 tons TNT.
- Terry Wallace (Los Alamos): estimated a yield of 0.5 to 2 kilotons, with 90 percent confidence that the yield is less than 1 kiloton
- Lynn R. Sykes (Columbia University) estimated a yield of 0.4 kilotons, with 68 percent confidence that it was between 0.2 and 0.7 kilotons and 95 percent probability that it was less than 1 kiloton

→Very effective detection of underground sub-kiloton explosions
Was It a Nuclear Test?

Possible conventional explosion: Five hundred tons of mixture of ammonium nitrate and fuel oil (ANFO), an inexpensive explosive used in mining, would fill the last 60 meters of a 3m x 3m tunnel.

Radioactivity was detected in the atmosphere of the region two days after the explosion.

North Korea has enough plutonium to make several Nagasaki-type weapons, and a clandestine uranium-enrichment program.

Detection of radioactive xenon isotopes, Xe-133 and Xe-135 (half-lives 5 five days, 0.4 days) indicate an underground nuclear test.

Because Xe-135 decays much more rapidly, the ratio of their concentrations in the plume provides a rough measure of the number of Xe-135 half-lives and therefore the time since the test.
The fission products of neutron induced fission are nuclei with different Mass number A, including the Xenon Isotopes ^{135}Xe, ^{133}Xe, ^{131m}Xe.
Was It a Successful Test?

Low yield of the 2006 North Korean test

Nagasaki bomb (20 kt): tons of high explosive implode solid subcritical sphere of plutonium to higher density to make it supercritical.

J. Robert Oppenheimer: 2 percent chance that the yield could be lower than 1 kiloton if neutron started the chain reaction just when the plutonium first became critical.

Perhaps North Korean weapon designers tried to go directly to a small weapon of 500-1,000-kilogram for use on missiles

→ Yield of explosion was much less than design yield, due to limitations in design and implementation of implosion technology.
2013, CTBTO Detects Fission Products from North Korean Nuclear Weapons Test

CTBTO DETECTS RADIOACTIVITY CONSISTENT WITH 12 FEBRUARY ANNOUNCED NORTH KOREAN NUCLEAR TEST

Vienna, 23 April 2013

The CTBTO’s radionuclide network has made a significant detection of radioactive noble gases that could be attributed to the nuclear test announced by the Democratic People’s Republic of Korea (DPRK) on 12 February 2013.

The detection was made at the radionuclide station in Takasaki, Japan, located at around 1,000 kilometres, or 620 miles, from the DPRK test site. Lower levels were picked up at another station in Ussuriysk, Russia. Two radioactive isotopes of the noble gas xenon were identified, xenon-131m and xenon-133, which provide reliable information on the nuclear nature of the source.

Xenon is a noble gas that cannot be chemically bound and slowly works its way out to the surface of an underground test site.

The depth of the 2013 DPRK test site has been estimated as 2 km at the CTBTO workshop in Urbana in April 2013.

The ratio of the detected xenon isotopes is consistent with a nuclear fission event occurring more than 50 days before the detection (nuclear fission can occur in both nuclear explosions and nuclear energy production). This coincides very well with announced nuclear test by the DPRK that occurred on 12 February 2013, 55 days before the measurement.
II) 2001–2009:
Nuclear Arms Control in the Present Era: Bush II
Bush II Nuclear Arms Control

—Abandoned the ABM Treaty as not in US interests
—Abandoned the START II
—Treaty on Strategic Offensive Reductions (SORT)
Strategic Offensive Reductions

SORT was signed in Moscow in May 2002

• It reduce total number of strategic nuclear warheads to 1,700 – 2,200 by Dec 31, 2023

• It would expire Dec 31, 2012 (but can be extended)
 —No sub-limits or other conditions
 —No schedule for reductions
 —de-MIRVing and/or WH destruction not required
 —Non-deployed WHs not counted
 —START-I remains in force

• Parties can withdraw three months after giving notice

• Entered into force in 2003; superseded by New START
2009–present: Nuclear Arms Control in the Present Era (Obama + Trump)
Current Nuclear Arms Control Priorities of the Obama Administration

- A treaty to reduce the number of tactical nuclear weapons
- An internationally-controlled “nuclear fuel bank” for reactor fuel
- Ratification and entry into force of the Comprehensive Test Ban Treaty (CTBT)
- A treaty to end the further production of fissile material

Concrete steps (1) New START

(2) Nuclear Security Summit
New START

• Replaces SORT to expire December 2012

Initial Meeting between Presidents Obama and Medvedev in April 2009 in London.

Negotiations during 2009:
First round: 19–20 May, Moscow
Second round: 1–3 June, Geneva
Third round: 22–24 June, Geneva
Fourth round: 22–24 July, Geneva
Fifth Round: 5–7 September, Geneva
Sixth round: 21–28 September, Geneva
Seventh round: 19–30 October, Geneva
Eighth round: 9 November, Geneva

Signed by Presidents Obama and Medvedev in April 8th, 2010.
New START In Force Feb-5 2011

• Replaces SORT to expire December 2012
• Signed April-8-2010 (President’s Obama and Medvedev)
• Ratified by Senate 12-22-2010, Duma 1-26-2011
• Entered into force February 5th 2011
• Implementation deadline February 5th 2023
• Duration February 5th 2021
• 5-year extensions, January 26th, 2021
• Russia suspended New START on February 21st 2023

• Limits deployed strategic warheads to 1550
• Limits strategic delivery vehicles to 800 with up to 700 deployed
• Verification methods: national technical means, site inspections, data exchange, notification protocols with regards to monitored sites
Remaining Dangers of Nuclear Proliferation

- Governments unfriendly to the U.S. are increasingly trading with one another to obtain nuclear weapons

- Nuclear weapon materials and technology have been proliferated by private networks, like the A.Q. Khan network based in Pakistan

- Theft, diversion, and sale of nuclear materials and technologies increases the danger of nuclear terrorism
Atoms for Peace

- During the 1950s and 1960s, the U.S. Atoms for Peace program and the corresponding Soviet program constructed hundreds of research reactors, including reactors for export to more than 40 other countries.

- These reactors were originally supplied with low-enriched Uranium (LEU), which is not usable for nuclear weapons, but demands for better reactor performance and longer-lived fuel led to a switch to weapons-grade Highly Enriched Uranium (HEU).
Availability of Highly Enriched Uranium

Effect of “Atoms for Peace”
Building 116 at the Kurchatov Institute in Moscow had enough HEU for a bomb at its research reactor, but had an overgrown fence and no intrusion detectors or alarms, an example of the poor state of security at many nuclear facilities after the collapse of the Soviet Union.
Several countries are capable of developing mechanisms to launch SRBMs, MRBMs, or land-attack cruise missiles from forward-based ships or other platforms.

U.S. territory is more likely to be attacked with [nuclear weapons] using non-missile delivery means—most likely from terrorists—than by missiles, primarily because non-missile delivery means are —

• less costly
• easier to acquire
• more reliable and accurate

They also can be used without attribution.

— Unclassified summaries of the most recent National Intelligence Estimates of Foreign Missile Developments and the Ballistic Missile Threat
Introduction to Nuclear Safeguards

What are Nuclear Safeguards?

“…the objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.” - IAEA, INFCIRC/153

A method by which a state or an international organization prevents or detects the theft or misuse of nuclear material by an adversary.

• An adversary can be an individual, a sub-state group or – in the case of an international organization – a state.
Although a state will use safeguards for its own domestic nuclear program, this module will focus primarily on safeguards through the scope of the International Atomic Energy Agency (IAEA).

When the IAEA enters a safeguards agreement with a state and places safeguards at that state’s facilities, the IAEA must treat the state as a potential adversary. This leads to several challenges:

- The IAEA must be able to perform its mission to detect Significant Quantities of NEM (SQ) within the specified timely manner.
- But IAEA safeguards cannot hinder or inconvenience the regular operation of the nuclear facility.
- The state can unilaterally modify or expel IAEA safeguards (example: North Korea).
Safeguards Agreements

• IAEA safeguards agreements are separated by two general categories:
 - weapons states (WS) as described by the NPT.
 - non-weapons states (NWS)

• WS agreements are generally less stringent than those with NWS and exist mostly on “good faith”. (There is little need to prevent a WS from diverting material to build weapons.)

• Issues between NWS under safeguards and the IAEA may be referred to the UN Security Council. Such issues may include:
 - Noncompliance with agreements
 - Detection of non-declared activities
 - Detection of a significant amount of missing nuclear material.
Constraining Horizontal Nonproliferation

The International Atomic Energy Agency (IAEA) and the Non-Proliferation Treaty (NPT) —

The Agency’s Safeguards (INFCIRC/26, 1961; INFCIRC/66, 1966)
 Limited to items and materials transferred from other countries.
 Still applies for Israel, India and Pakistan

NPT Nuclear Safeguards Agreement (INFCIRC/153, 1972)
 “Full scope”: covering all declared special nuclear material.
 Limited to declared materials and facilities.

NPT Additional Protocol (INFCIRC/540, 1997)
 Strengthen effectiveness and improve efficiency of nuclear safeguards.
Nuclear Safeguards according to INFCIRC/153

“Full scope”: covering all declared special nuclear material.
More than 900 facilities in 71 countries are under inspection.
There are 250 inspectors, costing $70 million per year.
Accountancy and physical inventory of materials
Containment and surveillance
Non-discriminatory approach —
Not cost-effective (79% is spent in Canada, Europe, & Japan)
Limited to declared materials and facilities.
Verification of the Nuclear Nonproliferation Treaty

The Additional Protocol

Comprehensive declaration of current and planned materials and facilities
Regular updates of the declaration

Complementary access on short notice (24 hours)

Environmental sampling
 • location specific (swipe samples)
 • wide-area (to be decided by the Board of Governors)

In addition

Open source information
Satellite imagery
Detection of Horizontal Proliferation

Example: Natanz, Iran
Apparent attempt to hide an uranium centrifuge enrichment facility underground

BEFORE: 20 SEP 02
AFTER: 20 JUN 04
Module 8: Nuclear Arms Control

Nuclear Safeguards
Key Safeguards Terms

- Significant Quantity (SQ): the approximate quantity of nuclear material in respect of which the possibility of manufacturing a nuclear explosive device cannot be excluded. SQs include losses during manufacturing.

<table>
<thead>
<tr>
<th>Material</th>
<th>Significant Quantity (SQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutonium (<80% Pu-238)</td>
<td>8 kg</td>
</tr>
<tr>
<td>U-233</td>
<td>8 kg</td>
</tr>
<tr>
<td>HEU (>20% U-235)</td>
<td>25 kg</td>
</tr>
<tr>
<td>LEU (<20% U-235)</td>
<td>75 kg</td>
</tr>
</tbody>
</table>

- Timely Detection: the time within which a detection must be made is based on the time required to weaponize the material in question.

<table>
<thead>
<tr>
<th>Material Form</th>
<th>Conversion Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu, HEU or U-233 metal</td>
<td>7-10 Days</td>
</tr>
<tr>
<td>Pu, HEU or U-233 oxides or nitrates (pure and unirradiated)</td>
<td>1-3 Weeks</td>
</tr>
<tr>
<td>Pu, HEU or U-233 in irradiated fuels</td>
<td>1-3 Months</td>
</tr>
<tr>
<td>Uranium with < 20% U-235 or U-233</td>
<td>1 Year</td>
</tr>
</tbody>
</table>
Diversion Methods

A facility operator may attempt to divert material through one of the following methods:

- Tampering with IAEA equipment
- Falsifying records
- Borrowing nuclear material from another site
- Replacing nuclear material with dummy material
- Preventing access to the facility.
Safeguards Methods

Safeguards at nuclear facilities is carried out through various methods and tools that can be described by a few general categories:

- Nondestructive Assaying (NDA)
- Destructive Analysis (DA)
- Containment/Surveillance (C/S)
- Environmental Sampling (ES)
Containment/Surveillance (C/S)

While assaying provides measurements for material accountancy, C/S is used for area monitoring and to ensure that data is not falsified.

Some C/S items include:

- Surveillance cameras
- Area monitors
- Seals/Tags
- Tamper indicating devices
Nondestructive Assay (NDA)

NDA tools can consist of any measurement device that does not destroy the sample.

- Mass scales
- Radiation detectors/neutron counters
- Cherenkov radiation viewing devices

Advantages:
- Can be operated in-situ, remotely
- Cost-effective
Cherenkov Radiation

Destructive Analysis (DA)

As the name implies, DA requires destruction of a small sample of material.

- Mass spectrometry
- Chemical analysis
- Radiochemical analysis

Advantages:

- More precise than NDA measurements
- Lower detections limits
Environmental Sampling (ES)

- Part of the goal for IAEA safeguards is to provide assurance of the absence of undeclared nuclear activity in a state.

- All nuclear processes emit trace particles of material into the environment.

- ES helps the IAEA to reach a conclusion on undeclared activity through various environmental signatures and observables.

 - May consist of:
 - Soil and water samples
 - Smears
 - Bulk or particle analysis
Sampling and Analysis of Atmospheric Gases

Need: To detect the presence and nature of nuclear fuel cycle process activities at suspected locations

Application: Away-from-site (stand-off) detection

Solution:

Use on-site LIBS to determine the nature and history of compounds and elements

Figure 10: Basic Methodology 1
A mobile on-site laboratory samples and concentrates atmospheric-borne pollutants. Local meteorological conditions and the GPS location are also recorded.

Figure 11: Basic Methodology 2
Samples are brought to a field laboratory for analysis.

Figure 12: Basic Methodology 3
The sample analysis data is combined with meteorological data and suitable atmospheric modelling to provide an estimate of the source direction.

Figure 13: Basic Methodology 4
The airborne material is identified and the probable location of the source is estimated.

Laser-Induced Breakdown Spectroscopy (LIBS)

Need: determine whether, or not, an undeclared location has been used for storing radiological material

Application: both on-site and off-site analysis.

Figure 6: Basic Methodology 2

LIBS is comprised of (i) a laser system to ablate the surface of the material to be analyzed to create a micro-vapour, and (ii) a spectrometer to generate a spectroscopic profile of the micro-vapour’s constituent components.
Material Unaccounted For (MUF): The accounting difference between the amount of recorded material transferred in and out of a facility and recorded inventory at the beginning and end of a particular reporting period.

\[\text{MUF} \equiv (\text{Starting Inventory} + \text{Inputs} - \text{Outputs} - \text{Ending Inventory}) \]

- MUF is never equal to zero for any facility!
- MUF can be both positive and negative (material created or lost).
- Each variable that contributes to the MUF calculation is based on measurements to quantify the amount of nuclear material in the facility.

All measurements have errors!!
Distribution and Probabilities of Measurement Results

68% of all measurements yield results within 1σ of the “true” value.

Ref: “Standard Deviation”

<table>
<thead>
<tr>
<th>Sigma Level</th>
<th>Percent Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 1σ</td>
<td>68% Confidence</td>
</tr>
<tr>
<td>± 2σ</td>
<td>95% Confidence</td>
</tr>
<tr>
<td>± 3σ</td>
<td>99% Confidence</td>
</tr>
</tbody>
</table>
Problem with accountancy at bulk material facilities

MUF = Material Unaccounted For

The problem of bulk material accountancy.

U.S. Plutonium: Where it Came From and Current Balance Statement
111.4 Metric Tons Produced or Acquired: 1944 – 1994

93.5%

5%

1.5%

Government Reactors 104.0 MT

Foreign Countries 5.7 MT

U.S. Civilian Industry 1.7 MT

Problem with accountancy at bulk material facilities

MUF = Material Unaccounted For

The problem of bulk material accountancy.

U.S. Plutonium: Where it Came From and Current Balance Statement
111.4 Metric Tons Produced or Acquired: 1944 – 1994

93.5%

5%

1.5%

Government Reactors 104.0 MT

Foreign Countries 5.7 MT

U.S. Civilian Industry 1.7 MT

Problem with accountancy at bulk material facilities

MUF = Material Unaccounted For

The problem of bulk material accountancy.

U.S. Plutonium: Where it Came From and Current Balance Statement
111.4 Metric Tons Produced or Acquired: 1944 – 1994

93.5%

5%

1.5%

Government Reactors 104.0 MT

Foreign Countries 5.7 MT

U.S. Civilian Industry 1.7 MT

Problem with accountancy at bulk material facilities

MUF = Material Unaccounted For

The problem of bulk material accountancy.
Other examples —

United Kingdom (Sellafield)

MUF =
2003: - 19.1 kg
2001: - 5.6 kg
1999: - 24.9 kg
1998: +21.0 kg
1996: +15.0 kg

South Africa
6 nuclear weapons dismantled and HEU transferred to safeguards, but material balance showed enough HEU for 7 weapons was produced.
The final exam will take place on

Thursday May 14th from 8-11 am
Final prep sessions on Tuesday 10am to noon and Wednesday from 3-5pm

Scope of exam:
75 multi-choice problems (70%), cumulative

1 Essay question (30%)

50% of the multiple-choice questions will be taken from the final exams of the last 3 years (available from the course web-page)
Suggestions for Final Prep

(1) Study old final exams and use slides + posted reading assignments to verify your answers.

(2) Review all news discussed in class

(3) Bring questions to office hours, Wednesday May 2nd, 12-1 pm in Grainger room 401.

(4) Review course slides on Top Hat or on course web-page.

(5) Review reading materials.
End of Module
Examples of major nuclear arms control agreements

- Horizontal non-proliferation
- Vertical non-proliferation
- Disarmament

Goals of Nuclear Arms Control

- NPT
- CTBT
- SALT
- START

- Nuclear Arsenals
- Nuclear Testing
- Nuclear Material
Success story

The NPT is the central treaty of nuclear non-proliferation regime

Number of State-Parties to the NPT

1970: 43
1975: 96
1985: 132
1995: 182
2005: 189 of 193 sovereign UN member states

(Israel, India, Pakistan, and North Korea are not parties)
An Explanation of the Language Used in National Intelligence Estimates – 1

From the November 2007 NIE “Iran: Nuclear Intentions and Capabilities

What We Mean When We Say: An Explanation of Estimative Language

We use phrases such as we judge, we assess, and we estimate—and probabilistic terms such as probably and likely—to convey analytical assessments and judgments. Such statements are not facts, proof, or knowledge. These assessments and judgments generally are based on collected information, which often is incomplete or fragmentary. Some assessments are built on previous judgments. In all cases, assessments and judgments are not intended to imply that we have “proof” that shows something to be a fact or that definitively links two items or issues.

In addition to conveying judgments rather than certainty, our estimative language also often conveys 1) our assessed likelihood or probability of an event; and 2) the level of confidence we ascribe to the judgment.
Estimates of Likelihood. Because analytical judgments are not certain, we use probabilistic language to reflect the Community’s estimates of the likelihood of developments or events. Terms such as probably, likely, very likely, or almost certainly indicate a greater than even chance. The terms unlikely and remote indicate a less than even chance that an event will occur; they do not imply that an event will not occur. Terms such as might or may reflect situations in which we are unable to assess the likelihood, generally because relevant information is unavailable, sketchy, or fragmented. Terms such as we cannot dismiss, we cannot rule out, or we cannot discount reflect an unlikely, improbable, or remote event whose consequences are such that it warrants mentioning. The chart provides a rough idea of the relationship of some of these terms to each other.
Confidence in Assessments. Our assessments and estimates are supported by information that varies in scope, quality and sourcing. Consequently, we ascribe high, moderate, or low levels of confidence to our assessments, as follows:

- **High confidence** generally indicates that our judgments are based on high-quality information, and/or that the nature of the issue makes it possible to render a solid judgment. A “high confidence” judgment is not a fact or a certainty, however, and such judgments still carry a risk of being wrong.

- **Moderate confidence** generally means that the information is credibly sourced and plausible but not of sufficient quality or corroborated sufficiently to warrant a higher level of confidence.

- **Low confidence** generally means that the information’s credibility and/or plausibility is questionable, or that the information is too fragmented or poorly corroborated to make solid analytic inferences, or that we have significant concerns or problems with the sources.