
Phys 325 Discussion 7 – Small Oscillations & Equilibrium

Here is a phrase that pops up all over the place: Small Oscillations.  It is closely connected to the notions of 
equilibrium and stable-vs-unstable equilibrium.  Let’s investigate!

• If we say an object is oscillating, we mean it moves “back and forth”.  Put different, if an object oscillates, it 
keeps returning to the same position.  (This statement might be approximate, e.g. if the oscillation is heavily 
damped by friction, the oscillations will eventually stop.)  

• If the object keeps returning to the same position, there must be a restoring force that pulls it toward some 
equilibrium position that it either passes through repeatedly (or circles around, in 2D or 3D problems).  

• So we have an equilibrium position around which the object is oscillating.  Let’s introduce some generic 
coordinate “x” to describe the state of our system, and let “x = 0” denote the system’s equilibrium position.  
(Note that “x” could be an angle, or if our system has more than one dimension it could be a set of 
coordinates; the point is that “x” denotes the “state of the system”.)  

• We must have a restoring force that keeps pulling the system toward the equilibrium position x = 0.  The force 
component Fx must therefore be an odd function of x : 
      - when x > 0, Fx must be negative to pull the system back toward x = 0 
      - when x < 0, Fx must be positive to pull the system back toward x = 0

• Now we come to the “small” part of “small oscillations”.  This means we are restricting ourselves to motions 
where the coordinate x remains close to the equilibrium position x=0.  In other words, x is always small. 

• If x is always small, the restoring force Fx(x) can be fruitfully approximated with a Taylor series around x=0:        

                                Fx (x) ≈ Fx x=0 + x
dFx
dx x=0

+
x2

2!
d 2Fx
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But we also know that Fx(x) is an odd function of x (since it’s a restoring force), so the constant and quadratic 
terms above have to be zero and the coefficient of the linear term has to be negative.  Note: another reason the 
constant term has to be zero at x=0 is because x=0 is an equilibrium point, i.e. zero force there!  Result:

                               Fx (x) ≈ −kx      where the constant k ≡ −
dFx
dx x=0

 is positive

• The message : if we stick to small enough x, our restoring force must have an approximately linear 
dependence on x.  A linear force with a negative constant?  We’ve seen that before ➔ that’s the good-old 
spring force = Hooke’s Law!  If you inject that into  Fx = mx , you get this super-familiar equation of motion:  

                                x = −x (k / m) .  
We all know the general solution to that:  x(t) = Acos(ωt) + Bsin(ωt)   or  x(t) = C cos(ωt + φ) , with 

ω = k / m .  This ω is called the frequency of small oscillations of the system.

Many problems in many physics or engineering end with the phrase “what is the frequency of small 
oscillations?”  When you see that, you know that you must approximate the restoring force for small 
deviations of the system from equilibrium using a leading-order Taylor approximation.  You won’t be told 
to make such an approximation, it is implied by the phrase “small oscillations”.  So here are some questions of 
this type involving rotations.  In all of them, uniform gravity is active (and provides the restoring force).   



Problem 1 : Small Oscillations for a Compound Pendulum	

 Checkpoints 1

A rod of length d and mass M has one of its ends attached to a fixed pivot that allows it to swing freely under 
the influence of gravity.  The rod has a non-uniform mass distribution that results in a moment of inertia I for 
rotation around its end (along any axis perpendicular to the rod) and a center-of-mass position that is a distance 
R from the end that’s attached to the pivot.  The given quantities are thus d, M, I, R, and of course g.

(a)  What is the frequency of small oscillations of the pendulum? 

(b)  You undoubtedly used the letter “ω” for the small-oscillation frequency.  And now let’s confront a 
massive point of confusion in rotational problems: Is this ω the angular velocity of anything? i.e., Is it the 
time-derivative of any angle?   Answer: no!  You can verify this yourself, but do ask your instructor if it’s not 
100% clear!  This also carries a message: beware of the formula “L=Iω” in small-oscillation problems … best 
advice is never to write it like that, but always as  L = I θ  or  L = I φ .  Same for torque: write  τ = I θ  not  τ = I ω
Then ω is reserved for the oscillation frequency.  If you prefer, you can alternatively use a different letter for the 
oscillation frequency, e.g. Ω. 

Problem 2 : Small Oscillations for a Ball in a Fixed Cylinder	

 Checkpoints 2

A small ball with radius r and uniform mass m rolls without slipping near the bottom of a fixed cylinder of 
radius R, where R > r.  Our goal is to find the frequency of small oscillations of the small ball. 

(a)  The moments of inertia for a ball of radius b and uniform mass M for rotation around its center (= its CM) is 
′I = 2Mb2 / 5 .  You may find it useful in this problem to also know the moment of inertia, I (edge)  for rotation of 

the ball around an edge-point, with the axis of rotation being tangential to the sphere.  For practice, use the 
parallel-axis theorem, I (B) = I CM

(B) + ′I  to find I (edge)  for the ball. 

(b)  Now off you go: find the frequency of small oscillations of the ball.  Hints are available here3 and here4.  
The first one may be worth reading straight away: it explains how you must introduce two angles to solve this 
problem.  The second hint presents detailed strategies for the solution, so see first if you can manage without it. 

(c)  If you solved the problem without that second hint, bravo!!  But the hint has some useful information : it 
describes multiple methods for solving this problem.  For practice, please re-solve the problem using the other 
techniques.  (You can avoid reading the hint by thinking of additional methods yourself. ☺)

1 Q1 (a) ω = MgR / I     (b) No, it’s an angular frequency, ω = 2π f , not an angular speed! 

2 Q2 (a)  I ( edge ) = 7Mb2 / 5   Method: Parallel-axis theorem is I (B ) = I CM
(B ) + ′I  where  I CM

(B ) = M

R(B ) × ω̂

2
.  For our problem, ω̂  is 

tangential to the sphere and so is perpendicular to the vector  

R(edge )  that points from the edge to the CM=center-of-sphere.  Thus,  

 I CM
(edge ) = M


R(edge ) × ω̂

2
= MR(edge) 2 = Mb2 .  Adding that to the known ′I = 2Mb2 /5  we get I ( edge ) = Mb2 + 2Mb2 /5 = 7Mb2 /5 . 

     (b,c) ω = 5g / 7(R − r)
3 There are two relevant angles: that of the small ball around its CM as it rolls – call that φ – and the angle between the line from the 
center of the cylinder to the ball and the vertical – call that θ.  You will need the relation rφ = (R − r)θ , provable by a really good 

sketch + consideration of arc length & the phrase “rolls without slipping”.  
4 You can solve this in multiple ways: (1) with two equations : F = MA  tangential to the cylinder &  ′τ = ′I φ  (2) with one torque 

equation around a well-chosen point that zaps the friction and normal forces  (3) using conservation of energy, once you’ve convinced 
yourself that the normal and rolling-friction forces do no work; this method itself even has two versions if  you consider that the ball’s 
kinetic energy can be calculated in two different ways.  For all methods, you also need rφ = (R − r)θ  from the previous hint.


