Physics 325: Fall 2018

Sample Exam 2. Solutions.

1 (20 points)
Consider a damped, linear forced simple harmonic oscillator

mi + ci + kx = F(t).

a) Consider first the case where F'(t) = 0, and solve for the general homogeneous solution.

(1)

b) Next, consider the case when F(t) = §(t — 7). Considering quiescent initial conditions,
z(t) = 0, #(t) = 0 for all ¢ < 7, solve for G(t — 7) = z(t) the solution for all ¢. You may
set 7 = 0, and then argue that the solution for 7 # 0 is simply a translated version of the

solution for 7 = 0.

c¢) Show that
(1) = / Glt — 7)F(r)dr
is a solution of equation for a general forcing function F(t)

a

We find the homogeneous solution by looking for a solution of the form
z(t) = exp(At),
substituting in gives the complementary equation
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and thus the general solution is

x(t) = qe~SWnttival | po—Cunt—iwgt _  —Cunt (A cos(wgt) + Bsin(wgt))



b

Recall that, the effect of a unit impulse at ¢ = 0 is to increase the velocity by an amount

Vo = m’ zg = 0. (10)

therefore, we can find the solution by solving for z(t) in free vibration with initial condition vy =
1/m. From part a, the homogenous solution is

z(t) = e "'B sin(wgt), (11)
since A = 0. Differentiating,
#(t =0) = Bwg = 1/m (12)
therefore, we have, for ¢t > 0
x(t) = efcw”tw. (13)
mwy

Now, time-translation invariance of the answer implies that for a general 7, we have

—Cw,, (t—7) sin(wy(t—7))
e el > T
Glt—r) = { 0 2 (1)

C

We can insert the solution into the equation of motion
Lx(t) =L, [/ G(t—r) dT:| / L,G(t —T1)F(r)dr (15)
:/ 5(t — 7)F(r)dr = F(t) (16)
and thus
- / TGt - ) F(r)dr (17)

solves the equation of motion.

2 (20 points)

S iﬂw%L

A harmonic oscillator consists of a mass on a spring initially at rest on a horizontal table with
a damping force Fy,p, = —cdz/dt. The system has mass m = 15 kg, 3 springs of equal spring
constant & = 80 N/m, and the damping constant ¢ = 120 kg/sec .




a) If the damping constant were zero (i.e. ¢ = 0), what would be the natural frequency w,, of

the system?

b) Is this an underdamped, overdamped, or critically damped oscillator (with ¢ = 120 kg/sec

and the other parameters as stated in the problem)?

c) The system is given initial conditions z(¢ = 0) = 10 mm, v(¢ = 0) = 0 mm/sec. Find the

resulting damped free vibration z(t) in mm.

d) At what rate does the system dissipate energy as a function of time (in Watts)?

a

In the absence of damping, the natural frequency is found from noting that the effective spring

constant is 3k, so that

|3k
W, = 3k _ 4 rad/sec
m

The nature of damping is determined by the value of the parameter

b

c 120 .
2mw, 2% 15%4

n

(=

so the system is critically damped.
¢
We recall that the critically damped case has repeated roots, so its solution is
x(t) = (A + Bt) exp(—Cwy,t).
Clearly,
A =10 mm.
Next, we need to solve for B, imposing the second condition, (0) = 0
z(0) = —Cw,, (A + B0) exp(—(w,,0) + Bexp(—(w,0) =0 = B =40 mm/sec
SO

x(t) = 10 exp(—Cw,t) + 40i exp(—(w,t) mm
sec

d
The oscillator dissipates energy at a rate

Fdampingv _ CfC2

(18)

(20)

(21)

(24)



we need z, from part c), this is

T =- Cwn(A + Bt) eXp(_CwnO) + B exp(—Cwnt)

t
= — (w, Btexp(—Cw,t) = _160& exp(—(w,t)mm/sec (25)
thus
' t\? t
plameing,, — 3% — —120(0.16)° <> exp (—8) Watts (26)
sec sec
t\? t
=—-3072 — | exp|—-8— | Watts (27)
sec sec
3 (20 points)
F(t)
) -1 | 0 1 2 t

A pictured function has Fourier series representation

+Za cos< mt) Zb sin (2”7”5) (28)

You are not asked to calculate the agy, a,,, or b,,.

a What is the period T'?
b Based on the plot of F'(t), what can you say about the coefficients a,, and b,,? Do any vanish?

¢ This force is applied to a simple damped oscillator
mi + ci + kx = F(t). (29)

Find the steady-state response zy_(t). Leave your answer in terms of the ag, a,, b, and
the system parameters m, k, ¢, and any secondary variables you may have defined in terms
of them (like ¢ or  or w,, or wy or G). (make sure you do define any you use.).

d What is the average position of the oscillator?

a

From the plot, we see that the period is 2.

b

The plot is even under ¢ — —t, thus the b,, = 0, while a,, # 0. Further, the time average is non-zero,
which implies that ag # 0.



C

We know that the response of a harmonic oscillator to a harmonic driving force F(t) = Fy cos(wt)
is

z(t) = FyG(w) cos(wt — ¢p(w)) (30)
where
1 1
Gw) =~ (31)
k 2\ 2 2
() e ()
and
1] 2
$(w) = tan [2@)&)"2] (32)
Wy, — W
therefore, using the fact that we can simply sum over the particular solutions
a o0
x(t) = i + nzz:l a,G(nw) cos(nwt — ¢p(nw)) (33)
where
w=m (34)
d
The cosine terms all average to zero, and therefore the average position is
Qg
= — 35
() = 30 (3)

4 (20 points)

A ball is thrown at a latitude of 45 degrees north. If it is thrown vertically up (as determined
locally) with a velocity v, where does the ball land? Note that in the local frame, the earth’s
angular velocity vector is given by

W =wp= (tsinf + ncosf) (36)

a) Neglect the centripetal and elevator forces due to the earth’s rotation, and starting from the
formula

mi = Z F"™ _om@ x ¢ (37)

show that the components of the equations of motion for the ball in the local reference frame
on the earth are given by

& = — 2wz cos(f) + 2wy sin(6) (38)
i = — 2wz sin(0) (39)
Z=—g+2wcos(b)i. (40)

b) Working to first order in the coriolis force, calculate the position of a ball that is thrown
vertically at a latitude of 45 degrees north.



a

The only true force that acts is gravity pointing vertically down. So, we have

mr = —mgi — 2mw (Gsin 0 + i cos 0) X (&6 + yi + 2a)
Now, since
axe=n, Axeé=—i,
we have
m(Zé + yn + 24) = — mgt — 2mw (4 sin @ + ncos @) x (£é + yn + 2a)

= —mgt — 2mw (sin @(in — yé) — cosO(zt — 2¢é))
and we find

T =2wysinf — 2w cos 0z
1§ =—2wsin 6z

Z=—g+2wcos i

b

Now, we will solve this order by order in the coriolis force, to zeroth order

T =0
j=0
Z=—g

and we have

the ball hits the ground again when

(52)

We can now put in this solution into the equations to solve for the correction, we see that only the

equation for x is corrected, we have
¥ = —2wcos 0z = —2wcos (v — gt)

and we can integrate

2

3
t t
Ty =T+ Uyt — 2w cost vy T 9% |

Our initial conditions are x, = 0, v, = 0. With t = 2v/g, we have

? 98U3 4* 187
T = —wcosb ’1)72—773 = —wecosfh — 57
g 39 @ 3y

o3
=— ——wcosf
3

2
9

(53)

(54)

(55)

(56)



with 6 = 7 /4, we get

T =———w (57)

5 (20 points)

A bug crawls around on a horizontal turntable rotating with constant angular speed w. The mass of
the bug is m and the coefficient of friction of the bug with the surface of the turntable is p . Recall
that Fyatictriction < |#N| where N = myg is the normal force. The onset of slippage occurs when

Fiatictriction = |#IN|. Gravity points downward. Ignore non-inertial effects due to Earths rotation.
The bug crawls with constant speed v, relative to the turntable in a radial path.

e How far from the center of the turntable can the bug crawl before starting to slip? (in terms
of w, b, u and g)

The total ficitious force on the bug is

FCttions — _ome x & — ma x [& x 7 (58)
for this problem, we have
S =wk, FT=b, T=uv4, (59)
SO
o fictitious U 27 I
F = — 2mwu,k X 1 —mbw’k x |k X1 (60)
= — 2mwv,j + mrw?i (61)

Now, the observer in the rotating frame thinks that the forces are in equilibrium (the bug is not
accelerating in the rotating frame), thus we have

F’friction + F’ﬁctitious -0 (62)
so that
Friction — 9,0 5 — mbw?i (63)
these are perpendicular, so we conclude that
g =\ (2wr,)? + '’ (64)

we can then solve for b,

4
w

b:\/ﬂzgz_w (65)
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