
Physics 325: Fall 2018

Sample Exam 2. Solutions.

1 (20 points)

Consider a damped, linear forced simple harmonic oscillator

mẍ+ cẋ+ kx = F (t). (1)

a) Consider first the case where F (t) = 0, and solve for the general homogeneous solution.

b) Next, consider the case when F (t) = δ(t − τ). Considering quiescent initial conditions,
x(t) = 0, ẋ(t) = 0 for all t < τ , solve for G(t − τ) = x(t) the solution for all t. You may
set τ = 0, and then argue that the solution for τ 6= 0 is simply a translated version of the
solution for τ = 0.

c) Show that

x(t) =

∫ ∞
−∞

G(t− τ)F (τ)dτ (2)

is a solution of equation (1) for a general forcing function F (t)

a

We find the homogeneous solution by looking for a solution of the form

x(t) = exp(λt), (3)

substituting in gives the complementary equation

mλ2 + λc+ k = 0 (4)

introducing

ωn =

√
k

m
, ζ =

c

2mωn
(5)

this is

λ2 + 2ζωnλ+ ω2
n = 0 (6)

which has solution

λ =
−2ζω ±

√
4ζ2ω2

n − 4ω2
n

2
(7)

=− ζωn ± iωn
√

1− ζ2 = −ζωn ± iωd (8)

and thus the general solution is

x(t) = ae−ζωnt+iωdt + be−ζωnt−iωdt = e−ζωnt (A cos(ωdt) +B sin(ωdt)) (9)
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b

Recall that, the effect of a unit impulse at t = 0 is to increase the velocity by an amount

v0 =
1

m
, x0 = 0. (10)

therefore, we can find the solution by solving for x(t) in free vibration with initial condition v0 =
1/m. From part a, the homogenous solution is

x(t) = e−ζωntB sin(ωdt), (11)

since A = 0. Differentiating,

ẋ(t = 0) = Bωd = 1/m (12)

therefore, we have, for t > 0

x(t) = e−ζωnt sin(ωdt)

mωd
. (13)

Now, time-translation invariance of the answer implies that for a general τ , we have

G(t− τ) =

{
e−ζωn(t−τ) sin(ωd(t−τ))

mωd
, t > τ

0 t < τ
(14)

c

We can insert the solution into the equation of motion

Ltx(t) =Lt
[∫ ∞
−∞

G(t− τ)F (τ)dτ

]
=

∫ ∞
−∞
LtG(t− τ)F (τ)dτ (15)

=

∫ ∞
−∞

δ(t− τ)F (τ)dτ = F (t) (16)

and thus

x(t) =

∫ ∞
−∞

G(t− τ)F (τ)dτ (17)

solves the equation of motion.

2 (20 points)

m 
k 

k k 

c 

A harmonic oscillator consists of a mass on a spring initially at rest on a horizontal table with
a damping force Fdamp = −cdx/dt. The system has mass m = 15 kg, 3 springs of equal spring
constant k = 80 N/m, and the damping constant c = 120 kg/sec .
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a) If the damping constant were zero (i.e. c = 0), what would be the natural frequency ωn of
the system?

b) Is this an underdamped, overdamped, or critically damped oscillator (with c = 120 kg/sec
and the other parameters as stated in the problem)?

c) The system is given initial conditions x(t = 0) = 10 mm, v(t = 0) = 0 mm/sec. Find the
resulting damped free vibration x(t) in mm.

d) At what rate does the system dissipate energy as a function of time (in Watts)?

a

In the absence of damping, the natural frequency is found from noting that the effective spring
constant is 3k, so that

ωn =

√
3k

m
= 4 rad/sec (18)

b

The nature of damping is determined by the value of the parameter ζ

ζ =
c

2mωn
=

120

2 ∗ 15 ∗ 4
= 1 (19)

so the system is critically damped.

c

We recall that the critically damped case has repeated roots, so its solution is

x(t) = (A+Bt) exp(−ζωnt). (20)

Clearly,

A = 10 mm. (21)

Next, we need to solve for B, imposing the second condition, ẋ(0) = 0

ẋ(0) = −ζωn(A+B0) exp(−ζωn0) +B exp(−ζωn0) = 0 ⇒ B = 40 mm/sec (22)

so

x(t) = 10 exp(−ζωnt) + 40
t

sec
exp(−ζωnt) mm (23)

d

The oscillator dissipates energy at a rate

F dampingv = −cẋ2 (24)
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we need ẋ, from part c), this is

ẋ =− ζωn(A+Bt) exp(−ζωn0) +B exp(−ζωnt)

=− ζωnBt exp(−ζωnt) = −160
t

sec
exp(−ζωnt)mm/sec (25)

thus

F dampingv = −cẋ2 =− 120(0.16)2

(
t

sec

)2

exp

(
−8

t

sec

)
Watts (26)

=− 3.072

(
t

sec

)2

exp

(
−8

t

sec

)
Watts (27)

3 (20 points)
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A pictured function has Fourier series representation

F (t) =
a0

2
+

∞∑
n=1

an cos

(
2nπt

T

)
+

∞∑
n=1

bn sin

(
2nπt

T

)
(28)

You are not asked to calculate the a0, an, or bn.

a What is the period T?

b Based on the plot of F (t), what can you say about the coefficients an and bn? Do any vanish?

c This force is applied to a simple damped oscillator

mẍ+ cẋ+ kx = F (t). (29)

Find the steady-state response xst−st(t). Leave your answer in terms of the a0, an, bn and
the system parameters m, k, c, and any secondary variables you may have defined in terms
of them (like ζ or β or ωn or ωd or G). (make sure you do define any you use.).

d What is the average position of the oscillator?

a

From the plot, we see that the period is 2.

b

The plot is even under t→ −t, thus the bn = 0, while an 6= 0. Further, the time average is non-zero,
which implies that a0 6= 0.
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c

We know that the response of a harmonic oscillator to a harmonic driving force F (t) = F0 cos(ωt)
is

x(t) = F0G(ω) cos(ωt− φ(ω)) (30)

where

G(ω) =
1

k

1√(
1−

(
ω
ωn

)2
)2

+ 4ζ2
(
ω
ωn

)2

(31)

and

φ(ω) = tan−1

[
2ζωωn

ω2
n − ω

2

]
(32)

therefore, using the fact that we can simply sum over the particular solutions

x(t) =
a0

2k
+

∞∑
n=1

anG(nω) cos(nωt− φ(nω)) (33)

where

ω = π (34)

d

The cosine terms all average to zero, and therefore the average position is

〈x〉 =
a0

2k
(35)

4 (20 points)

A ball is thrown at a latitude of 45 degrees north. If it is thrown vertically up (as determined
locally) with a velocity v, where does the ball land? Note that in the local frame, the earth’s
angular velocity vector is given by

~ω = ωp̂ = (û sin θ + n̂ cos θ) (36)

a) Neglect the centripetal and elevator forces due to the earth’s rotation, and starting from the
formula

m~̈r =
∑

~F true − 2m~ω × ~v (37)

show that the components of the equations of motion for the ball in the local reference frame
on the earth are given by

ẍ =− 2ωż cos(θ) + 2ωẏ sin(θ) (38)

ÿ =− 2ωẋ sin(θ) (39)

z̈ =− g + 2ω cos(θ)ẋ. (40)

b) Working to first order in the coriolis force, calculate the position of a ball that is thrown
vertically at a latitude of 45 degrees north.
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a

The only true force that acts is gravity pointing vertically down. So, we have

m~̈r = −mgû− 2mω (û sin θ + n̂ cos θ)× (ẋê+ ẏn̂+ żû) (41)

Now, since

û× ê = n̂, n̂× ê = −û, (42)

we have

m(ẍê+ ÿn̂+ z̈û) =−mgû− 2mω (û sin θ + n̂ cos θ)× (ẋê+ ẏn̂+ żû) (43)

=−mgû− 2mω (sin θ(ẋn̂− ẏê)− cos θ(ẋû− żê)) (44)

and we find

ẍ =2ωẏ sin θ − 2ω cos θż (45)

ÿ =− 2ω sin θẋ (46)

z̈ =− g + 2ω cos θẋ (47)

b

Now, we will solve this order by order in the coriolis force, to zeroth order

ẍ =0 (48)

ÿ =0 (49)

z̈ =− g (50)

and we have

z(t) = vt− 1

2
gt2 (51)

the ball hits the ground again when

t =
2v

g
. (52)

We can now put in this solution into the equations to solve for the correction, we see that only the
equation for x is corrected, we have

ẍ1 = −2ω cos θż0 = −2ω cos θ(v − gt) (53)

and we can integrate

x1 = x0 + vx0t− 2ω cos θ

(
v
t2

2
− g t

3

6

)
. (54)

Our initial conditions are x0 = 0, vx0 = 0. With t = 2v/g, we have

x1 =− ω cos θ

(
v

4v2

g2 −
g

3

8v3

g3

)
= −ω cos θ

(
4v3

g2 −
1

3

8v3

g2

)
(55)

=− 4

3

v3

g2ω cos θ (56)
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with θ = π/4, we get

x1 = −2
√

2

3

v3

g2ω (57)

5 (20 points)

A bug crawls around on a horizontal turntable rotating with constant angular speed ω. The mass of
the bug is m and the coefficient of friction of the bug with the surface of the turntable is µ . Recall
that Fstaticfriction ≤ |µN | where N = mg is the normal force. The onset of slippage occurs when
Fstaticfriction = |µN |. Gravity points downward. Ignore non-inertial effects due to Earths rotation.

The bug crawls with constant speed vr relative to the turntable in a radial path.

• How far from the center of the turntable can the bug crawl before starting to slip? (in terms
of ω, b, µ and g)

The total ficitious force on the bug is

~F fictitious = −2m~ω × ~v −m~ω × [~ω × ~r] (58)

for this problem, we have

~ω = ωk̂, ~r = b̂i, ~v = vr î, (59)

so

~F fictitious =− 2mωvrk̂ × î−mbω
2k̂ ×

[
k̂ ×~i

]
(60)

=− 2mωvr ĵ +mrω2î (61)

Now, the observer in the rotating frame thinks that the forces are in equilibrium (the bug is not
accelerating in the rotating frame), thus we have

~F friction + ~F fictitious = 0 (62)

so that

~F friction = 2ωvr ĵ −mbω
2î (63)

these are perpendicular, so we conclude that

µg =

√
(2ωvr)

2 + ω4b2 (64)

we can then solve for b,

b =

√
µ2g2 − (2ωvr)

2

ω4 (65)
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