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Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a point p on the unit circle holds:

cos(φ) = xp , sin(φ) = yp , tan(φ) =
yp

xp

sin2(x) + cos2(x) = 1 and cos−2(x) = 1 + tan2(x).

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b) , sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

tan(a± b) =
tan(a)± tan(b)

1∓ tan(a) tan(b)

The sum formulas are:

sin(p) + sin(q) = 2 sin( 1
2 (p+ q)) cos( 1

2 (p− q))
sin(p)− sin(q) = 2 cos( 1

2 (p+ q)) sin( 1
2 (p− q))

cos(p) + cos(q) = 2 cos( 1
2 (p+ q)) cos( 1

2 (p− q))
cos(p)− cos(q) = −2 sin( 1

2 (p+ q)) sin( 1
2 (p− q))

From these equations can be derived that

2 cos2(x) = 1 + cos(2x) , 2 sin2(x) = 1− cos(2x)
sin(π − x) = sin(x) , cos(π − x) = − cos(x)

sin( 1
2π − x) = cos(x) , cos( 1

2π − x) = sin(x)

Conclusions from equalities:

sin(x) = sin(a) ⇒ x = a± 2kπ or x = (π − a)± 2kπ, k ∈ IN
cos(x) = cos(a) ⇒ x = a± 2kπ or x = −a± 2kπ

tan(x) = tan(a) ⇒ x = a± kπ and x 6= π

2
± kπ

The following relations exist between the inverse goniometric functions:

arctan(x) = arcsin
(

x√
x2 + 1

)
= arccos

(
1√

x2 + 1

)
, sin(arccos(x)) =

√
1− x2

1
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1.2 Hyperbolic functions

The hyperbolic functions are defined by:

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2
, tanh(x) =

sinh(x)
cosh(x)

From this follows that cosh2(x)− sinh2(x) = 1. Further holds:

arsinh(x) = ln |x+
√
x2 + 1| , arcosh(x) = arsinh(

√
x2 − 1)

1.3 Calculus

The derivative of a function is defined as:

df

dx
= lim

h→0

f(x+ h)− f(x)
h

Derivatives obey the following algebraic rules:

d(x± y) = dx± dy , d(xy) = xdy + ydx , d

(
x

y

)
=
ydx− xdy

y2

For the derivative of the inverse function f inv(y), defined by f inv(f(x)) = x, holds at point P = (x, f(x)):

(
df inv(y)
dy

)
P

·
(
df(x)
dx

)
P

= 1

Chain rule: if f = f(g(x)), then holds

df

dx
=
df

dg

dg

dx

Further, for the derivatives of products of functions holds:

(f · g)(n) =
n∑

k=0

(
n

k

)
f (n−k) · g(k)

For the primitive function F (x) holds: F ′(x) = f(x). An overview of derivatives and primitives is:
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y = f(x) dy/dx = f ′(x)
∫

f(x)dx

axn anxn−1 a(n+ 1)−1xn+1

1/x −x−2 ln |x|
a 0 ax

ax ax ln(a) ax/ ln(a)
ex ex ex

a log(x) (x ln(a))−1 (x ln(x)− x)/ ln(a)
ln(x) 1/x x ln(x)− x
sin(x) cos(x) − cos(x)
cos(x) − sin(x) sin(x)
tan(x) cos−2(x) − ln | cos(x)|

sin−1(x) − sin−2(x) cos(x) ln | tan( 1
2x)|

sinh(x) cosh(x) cosh(x)
cosh(x) sinh(x) sinh(x)

arcsin(x) 1/
√

1− x2 x arcsin(x) +
√

1− x2

arccos(x) −1/
√

1− x2 x arccos(x)−
√

1− x2

arctan(x) (1 + x2)−1 x arctan(x)− 1
2 ln(1 + x2)

(a+ x2)−1/2 −x(a+ x2)−3/2 ln |x+
√
a+ x2|

(a2 − x2)−1 2x(a2 + x2)−2 1
2a

ln |(a+ x)/(a− x)|

The curvature ρ of a curve is given by: ρ =
(1 + (y′)2)3/2

|y′′|

The theorem of De ’l Hôpital: if f(a) = 0 and g(a) = 0, then is lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

1.4 Limits

lim
x→0

sin(x)
x

= 1 , lim
x→0

ex − 1
x

= 1 , lim
x→0

tan(x)
x

= 1 , lim
k→0

(1 + k)1/k = e , lim
x→∞

(
1 +

n

x

)x

= en

lim
x↓0

xa ln(x) = 0 , lim
x→∞

lnp(x)
xa

= 0 , lim
x→0

ln(x+ a)
x

= a , lim
x→∞

xp

ax
= 0 als |a| > 1.

lim
x→0

(
a1/x − 1

)
= ln(a) , lim

x→0

arcsin(x)
x

= 1 , lim
x→∞

x
√
x = 1

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number z = a + bi with a and b ∈ IR. a is the real part, b the imaginary part of z.
|z| =

√
a2 + b2. By definition holds: i2 = −1. Every complex number can be written as z = |z| exp(iϕ),



4 Mathematics Formulary by ir. J.C.A. Wevers

with tan(ϕ) = b/a. The complex conjugate of z is defined as z = z∗ := a− bi. Further holds:

(a+ bi)(c+ di) = (ac− bd) + i(ad+ bc)
(a+ bi) + (c+ di) = a+ c+ i(b+ d)

a+ bi

c+ di
=

(ac+ bd) + i(bc− ad)
c2 + d2

Goniometric functions can be written as complex exponents:

sin(x) =
1
2i

(eix − e−ix)

cos(x) =
1
2
(eix + e−ix)

From this follows that cos(ix) = cosh(x) and sin(ix) = i sinh(x). Further follows from this that
e±ix = cos(x)± i sin(x), so eiz 6= 0∀z. Also the theorem of De Moivre follows from this:
(cos(ϕ) + i sin(ϕ))n = cos(nϕ) + i sin(nϕ).

Products and quotients of complex numbers can be written as:

z1 · z2 = |z1| · |z2|(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))
z1
z2

=
|z1|
|z2|

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2))

The following can be derived:

|z1 + z2| ≤ |z1|+ |z2| , |z1 − z2| ≥ | |z1| − |z2| |

And from z = r exp(iθ) follows: ln(z) = ln(r) + iθ, ln(z) = ln(z)± 2nπi.

1.5.2 Quaternions

Quaternions are defined as: z = a+ bi+ cj + dk, with a, b, c, d ∈ IR and i2 = j2 = k2 = −1. The products
of i, j, k with each other are given by ij = −ji = k, jk = −kj = i and ki = −ik = j.

1.6 Geometry

1.6.1 Triangles

The sine rule is:
a

sin(α)
=

b

sin(β)
=

c

sin(γ)

Here, α is the angle opposite to a, β is opposite to b and γ opposite to c. The cosine rule is: a2 =
b2 + c2 − 2bc cos(α). For each triangle holds: α+ β + γ = 180◦.

Further holds:
tan( 1

2 (α+ β))
tan( 1

2 (α− β))
=
a+ b

a− b

The surface of a triangle is given by 1
2ab sin(γ) = 1

2aha =
√
s(s− a)(s− b)(s− c) with ha the perpendicular

on a and s = 1
2 (a+ b+ c).
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1.6.2 Curves

Cycloid: if a circle with radius a rolls along a straight line, the trajectory of a point on this circle has the
following parameter equation:

x = a(t+ sin(t)) , y = a(1 + cos(t))

Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point
on the small circle has the following parameter equation:

x = a sin
(
R+ a

a
t

)
+ (R+ a) sin(t) , y = a cos

(
R+ a

a
t

)
+ (R+ a) cos(t)

Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a
point on the small circle has the following parameter equation:

x = a sin
(
R− a

a
t

)
+ (R− a) sin(t) , y = −a cos

(
R− a

a
t

)
+ (R− a) cos(t)

A hypocycloid with a = R is called a cardioid. It has the following parameterequation in polar coordinates:
r = 2a[1− cos(ϕ)].

1.7 Vectors

The inner product is defined by: ~a ·~b =
∑

i

aibi = |~a | · |~b | cos(ϕ)

where ϕ is the angle between ~a and ~b. The external product is in IR3 defined by:

~a×~b =

 aybz − azby
azbx − axbz
axby − aybx

 =

∣∣∣∣∣∣
~ex ~ey ~ez

ax ay az

bx by bz

∣∣∣∣∣∣
Further holds: |~a×~b | = |~a | · |~b | sin(ϕ), and ~a× (~b× ~c ) = (~a · ~c )~b− (~a ·~b )~c.

1.8 Series

1.8.1 Expansion

The Binomium of Newton is:

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

where
(
n

k

)
:=

n!
k!(n− k)!

.

By subtracting the series
n∑

k=0

rk and r
n∑

k=0

rk one finds:

n∑
k=0

rk =
1− rn+1

1− r
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and for |r| < 1 this gives the geometric series:
∞∑

k=0

rk =
1

1− r
.

The arithmetic series is given by:
N∑

n=0

(a+ nV ) = a(N + 1) + 1
2N(N + 1)V .

The expansion of a function around the point a is given by the Taylor series:

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a) +R

where the remainder is given by:

Rn(h) = (1− θ)nh
n

n!
f (n+1)(θh)

and is subject to:
mhn+1

(n+ 1)!
≤ Rn(h) ≤ Mhn+1

(n+ 1)!

From this one can deduce that

(1− x)α =
∞∑

n=0

(
α

n

)
xn

One can derive that:
∞∑

n=1

1
n2

=
π2

6
,

∞∑
n=1

1
n4

=
π4

90
,

∞∑
n=1

1
n6

=
π6

945

n∑
k=1

k2 = 1
6n(n+ 1)(2n+ 1) ,

∞∑
n=1

(−1)n+1

n2
=
π2

12
,

∞∑
n=1

(−1)n+1

n
= ln(2)

∞∑
n=1

1
4n2 − 1

= 1
2 ,

∞∑
n=1

1
(2n− 1)2

=
π2

8
,

∞∑
n=1

1
(2n− 1)4

=
π4

96
,

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32

1.8.2 Convergence and divergence of series

If
∑
n
|un| converges,

∑
n
un also converges.

If lim
n→∞

un 6= 0 then
∑
n
un is divergent.

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent
(Leibniz).

If
∫∞

p
f(x)dx <∞, then

∑
n
fn is convergent.

If un > 0 ∀n then is
∑
n
un convergent if

∑
n

ln(un + 1) is convergent.

If un = cnx
n the radius of convergence ρ of

∑
n
un is given by:

1
ρ

= lim
n→∞

n
√
|cn| = lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣.
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The series
∞∑

n=1

1
np

is convergent if p > 1 and divergent if p ≤ 1.

If: lim
n→∞

un

vn
= p, than the following is true: if p > 0 than

∑
n
un and

∑
n
vn are both divergent or both

convergent, if p = 0 holds: if
∑
n
vn is convergent, than

∑
n
un is also convergent.

If L is defined by: L = lim
n→∞

n
√
|nn|, or by: L = lim

n→∞

∣∣∣∣un+1

un

∣∣∣∣, then is
∑
n
un divergent if L > 1 and

convergent if L < 1.

1.8.3 Convergence and divergence of functions

f(x) is continuous in x = a only if the upper - and lower limit are equal: lim
x↑a

f(x) = lim
x↓a

f(x). This is

written as: f(a−) = f(a+).

If f(x) is continuous in a and: lim
x↑a

f ′(x) = lim
x↓a

f ′(x), than f(x) is differentiable in x = a.

We define: ‖f‖W := sup(|f(x)| |x ∈W ), and lim
x→∞

fn(x) = f(x). Than holds: {fn} is uniform convergent

if lim
n→∞

‖fn − f‖ = 0, or: ∀(ε > 0)∃(N)∀(n ≥ N)‖fn − f‖ < ε.

Weierstrass’ test: if
∑
‖un‖W is convergent, than

∑
un is uniform convergent.

We define S(x) =
∞∑

n=N

un(x) and F (y) =

b∫
a

f(x, y)dx := F . Than it can be proved that:

Theorem For Demands on W Than holds on W

rows fn continuous, f is continuous
{fn} uniform convergent

C series S(x) uniform convergent, S is continuous
un continuous

integral f is continuous F is continuous
rows fn can be integrated, fn can be integrated,

{fn} uniform convergent
∫
f(x)dx = lim

n→∞

∫
fndx

I series S(x) is uniform convergent, S can be integrated,
∫
Sdx =

∑∫
undx

un can be integrated

integral f is continuous
∫
Fdy =

∫∫
f(x, y)dxdy

rows {fn} ∈C−1; {f ′n} unif.conv → φ f ′ = φ(x)

D series un ∈C−1;
∑
un conv;

∑
u′n u.c. S′(x) =

∑
u′n(x)

integral ∂f/∂y continuous Fy =
∫
fy(x, y)dx
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1.9 Products and quotients

For a, b, c, d ∈ IR holds:
The distributive property: (a+ b)(c+ d) = ac+ ad+ bc+ bd
The associative property: a(bc) = b(ac) = c(ab) and a(b+ c) = ab+ ac
The commutative property: a+ b = b+ a, ab = ba.

Further holds:

a2n − b2n

a± b
= a2n−1 ± a2n−2b+ a2n−3b2 ± · · · ± b2n−1 ,

a2n+1 − b2n+1

a+ b
=

n∑
k=0

a2n−kb2k

(a± b)(a2 ± ab+ b2) = a3 ± b3 , (a+ b)(a− b) = a2 + b2 ,
a3 ± b3

a+ b
= a2 ∓ ba+ b2

1.10 Logarithms

Definition: a log(x) = b⇔ ab = x. For logarithms with base e one writes ln(x).

Rules: log(xn) = n log(x), log(a) + log(b) = log(ab), log(a)− log(b) = log(a/b).

1.11 Polynomials

Equations of the type
n∑

k=0

akx
k = 0

have n roots which may be equal to each other. Each polynomial p(z) of order n ≥ 1 has at least one root
in C . If all ak ∈ IR holds: when x = p with p ∈ C a root, than p∗ is also a root. Polynomials up to and
including order 4 have a general analytical solution, for polynomials with order ≥ 5 there does not exist a
general analytical solution.

For a, b, c ∈ IR and a 6= 0 holds: the 2nd order equation ax2 + bx+ c = 0 has the general solution:

x =
−b±

√
b2 − 4ac

2a

For a, b, c, d ∈ IR and a 6= 0 holds: the 3rd order equation ax3 + bx2 + cx+d = 0 has the general analytical
solution:

x1 = K − 3ac− b2

9a2K
− b

3a

x2 = x∗3 = −K
2

+
3ac− b2

18a2K
− b

3a
+ i

√
3

2

(
K +

3ac− b2

9a2K

)

with K =

(
9abc− 27da2 − 2b3

54a3
+
√

3
√

4ac3 − c2b2 − 18abcd+ 27a2d2 + 4db3

18a2

)1/3
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1.12 Primes

A prime is a number ∈ IN that can only be divided by itself and 1. There are an infinite number of primes.
Proof: suppose that the collection of primes P would be finite, than construct the number q = 1 +

∏
p∈P

p,

than holds q = 1(p) and so Q cannot be written as a product of primes from P . This is a contradiction.

If π(x) is the number of primes ≤ x, than holds:

lim
x→∞

π(x)
x/ ln(x)

= 1 and lim
x→∞

π(x)
x∫
2

dt
ln(t)

= 1

For each N ≥ 2 there is a prime between N and 2N .

The numbers Fk := 2k + 1 with k ∈ IN are called Fermat numbers. Many Fermat numbers are prime.

The numbersMk := 2k−1 are called Mersenne numbers. They occur when one searches for perfect numbers,
which are numbers n ∈ IN which are the sum of their different dividers, for example 6 = 1+2+3. There are
23 Mersenne numbers for k < 12000 which are prime: for k ∈ {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521,
607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213}.

To check if a given number n is prime one can use a sieve method. The first known sieve method was
developed by Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don’t prove
that a number is prime but give a large probability.

1. Take the first 4 primes: b = {2, 3, 5, 7},

2. Take w(b) = bn−1 mod n, for each b,

3. If w = 1 for each b, then n is probably prime. For each other value of w, n is certainly not prime.
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Calculus

3.1 Integrals

3.1.1 Arithmetic rules

The primitive function F (x) of f(x) obeys the rule F ′(x) = f(x). With F (x) the primitive of f(x) holds
for the definite integral

b∫
a

f(x)dx = F (b)− F (a)

If u = f(x) holds:
b∫

a

g(f(x))df(x) =

f(b)∫
f(a)

g(u)du

Partial integration: with F and G the primitives of f and g holds:∫
f(x) · g(x)dx = f(x)G(x)−

∫
G(x)

df(x)
dx

dx

A derivative can be brought under the intergral sign (see section 1.8.3 for the required conditions):

d

dy

 x=h(y)∫
x=g(y)

f(x, y)dx

 =

x=h(y)∫
x=g(y)

∂f(x, y)
∂y

dx− f(g(y), y)
dg(y)
dy

+ f(h(y), y)
dh(y)
dy

3.1.2 Arc lengts, surfaces and volumes

The arc length ` of a curve y(x) is given by:

` =
∫ √

1 +
(
dy(x)
dx

)2

dx

The arc length ` of a parameter curve F (~x(t)) is:

` =
∫
Fds =

∫
F (~x(t))|~̇x(t)|dt

14
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with

~t =
d~x

ds
=

~̇x(t)
|~̇x(t)|

, |~t | = 1

∫
(~v,~t)ds =

∫
(~v, ~̇t(t))dt =

∫
(v1dx+ v2dy + v3dz)

The surface A of a solid of revolution is:

A = 2π
∫
y

√
1 +

(
dy(x)
dx

)2

dx

The volume V of a solid of revolution is:

V = π

∫
f2(x)dx

3.1.3 Separation of quotients

Every rational function P (x)/Q(x) where P and Q are polynomials can be written as a linear combination
of functions of the type (x− a)k with k ∈ ZZ, and of functions of the type

px+ q

((x− a)2 + b2)n

with b > 0 and n ∈ IN . So:

p(x)
(x− a)n

=
n∑

k=1

Ak

(x− a)k
,

p(x)
((x− b)2 + c2)n

=
n∑

k=1

Akx+B

((x− b)2 + c2)k

Recurrent relation: for n 6= 0 holds:∫
dx

(x2 + 1)n+1
=

1
2n

x

(x2 + 1)n
+

2n− 1
2n

∫
dx

(x2 + 1)n

3.1.4 Special functions

Elliptic functions

Elliptic functions can be written as a power series as follows:√
1− k2 sin2(x) = 1−

∞∑
n=1

(2n− 1)!!
(2n)!!(2n− 1)

k2n sin2n(x)

1√
1− k2 sin2(x)

= 1 +
∞∑

n=1

(2n− 1)!!
(2n)!!

k2n sin2n(x)

with n!! = n(n− 2)!!.
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The Gamma function

The gamma function Γ(y) is defined by:

Γ(y) =

∞∫
0

e−xxy−1dx

One can derive that Γ(y + 1) = yΓ(y) = y!. This is a way to define faculties for non-integers. Further one
can derive that

Γ(n+ 1
2 ) =

√
π

2n
(2n− 1)!! and Γ(n)(y) =

∞∫
0

e−xxy−1 lnn(x)dx

The Beta function

The betafunction β(p, q) is defined by:

β(p, q) =

1∫
0

xp−1(1− x)q−1dx

with p and q > 0. The beta and gamma functions are related by the following equation:

β(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

The Delta function

The delta function δ(x) is an infinitely thin peak function with surface 1. It can be defined by:

δ(x) = lim
ε→0

P (ε, x) with P (ε, x) =

{
0 for |x| > ε
1
2ε

when |x| < ε

Some properties are:
∞∫
−∞

δ(x)dx = 1 ,

∞∫
−∞

F (x)δ(x)dx = F (0)

3.1.5 Goniometric integrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines
tan( 1

2x) := t:

dx =
2dt

1 + t2
, cos(x) =

1− t2

1 + t2
, sin(x) =

2t
1 + t2
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Each integral of the type
∫
R(x,

√
ax2 + bx+ c)dx can be converted into one of the types that were treated

in section 3.1.3. After this conversion one can substitute in the integrals of the type:∫
R(x,

√
x2 + 1)dx : x = tan(ϕ) , dx =

dϕ

cos(ϕ)
of
√
x2 + 1 = t+ x∫

R(x,
√

1− x2)dx : x = sin(ϕ) , dx = cos(ϕ)dϕ of
√

1− x2 = 1− tx∫
R(x,

√
x2 − 1)dx : x =

1
cos(ϕ)

, dx =
sin(ϕ)
cos2(ϕ)

dϕ of
√
x2 − 1 = x− t

These definite integrals are easily solved:

π/2∫
0

cosn(x) sinm(x)dx =
(n− 1)!!(m− 1)!!

(m+ n)!!
·
{
π/2 when m and n are both even
1 in all other cases

Some important integrals are:

∞∫
0

xdx

eax + 1
=

π2

12a2
,

∞∫
−∞

x2dx

(ex + 1)2
=
π2

3
,

∞∫
0

x3dx

ex + 1
=
π4

15

3.2 Functions with more variables

3.2.1 Derivatives

The partial derivative with respect to x of a function f(x, y) is defined by:(
∂f

∂x

)
x0

= lim
h→0

f(x0 + h, y0)− f(x0, y0)
h

The directional derivative in the direction of α is defined by:

∂f

∂α
= lim

r↓0

f(x0 + r cos(α), y0 + r sin(α))− f(x0, y0)
r

= (~∇f, (sinα, cosα)) =
∇f · ~v
|~v|

When one changes to coordinates f(x(u, v), y(u, v)) holds:

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

If x(t) and y(t) depend only on one parameter t holds:

∂f

∂t
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

The total differential df of a function of 3 variables is given by:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz
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So
df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
+
∂f

∂z

dz

dx

The tangent in point ~x0 at the surface f(x, y) = 0 is given by the equation fx(~x0)(x−x0)+fy(~x0)(y−y0) = 0.

The tangent plane in ~x0 is given by: fx(~x0)(x− x0) + fy(~x0)(y − y0) = z − f(~x0).

3.2.2 Taylor series

A function of two variables can be expanded as follows in a Taylor series:

f(x0 + h, y0 + k) =
n∑

p=0

1
p!

(
h
∂p

∂xp
+ k

∂p

∂yp

)
f(x0, y0) +R(n)

with R(n) the residual error and(
h
∂p

∂xp
+ k

∂p

∂yp

)
f(a, b) =

p∑
m=0

(
p

m

)
hmkp−m ∂pf(a, b)

∂xm∂yp−m

3.2.3 Extrema

When f is continuous on a compact boundary V there exists a global maximum and a global minumum
for f on this boundary. A boundary is called compact if it is limited and closed.

Possible extrema of f(x, y) on a boundary V ∈ IR2 are:

1. Points on V where f(x, y) is not differentiable,

2. Points where ~∇f = ~0,

3. If the boundary V is given by ϕ(x, y) = 0, than all points where ~∇f(x, y) + λ~∇ϕ(x, y) = 0 are
possible for extrema. This is the multiplicator method of Lagrange, λ is called a multiplicator.

The same as in IR2 holds in IR3 when the area to be searched is constrained by a compact V , and V is
defined by ϕ1(x, y, z) = 0 and ϕ2(x, y, z) = 0 for extrema of f(x, y, z) for points (1) and (2). Point (3) is
rewritten as follows: possible extrema are points where ~∇f(x, y, z) + λ1

~∇ϕ1(x, y, z) + λ2
~∇ϕ2(x, y, z) = 0.

3.2.4 The ∇-operator

In cartesian coordinates (x, y, z) holds:

~∇ =
∂

∂x
~ex +

∂

∂y
~ey +

∂

∂z
~ez

gradf =
∂f

∂x
~ex +

∂f

∂y
~ey +

∂f

∂z
~ez

div ~a =
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z
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curl ~a =
(
∂az

∂y
− ∂ay

∂z

)
~ex +

(
∂ax

∂z
− ∂az

∂x

)
~ey +

(
∂ay

∂x
− ∂ax

∂y

)
~ez

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

In cylindrical coordinates (r, ϕ, z) holds:

~∇ =
∂

∂r
~er +

1
r

∂

∂ϕ
~eϕ +

∂

∂z
~ez

gradf =
∂f

∂r
~er +

1
r

∂f

∂ϕ
~eϕ +

∂f

∂z
~ez

div ~a =
∂ar

∂r
+
ar

r
+

1
r

∂aϕ

∂ϕ
+
∂az

∂z

curl ~a =
(

1
r

∂az

∂ϕ
− ∂aϕ

∂z

)
~er +

(
∂ar

∂z
− ∂az

∂r

)
~eϕ +

(
∂aϕ

∂r
+
aϕ

r
− 1
r

∂ar

∂ϕ

)
~ez

∇2f =
∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2
∂2f

∂ϕ2
+
∂2f

∂z2

In spherical coordinates (r, θ, ϕ) holds:

~∇ =
∂

∂r
~er +

1
r

∂

∂θ
~eθ +

1
r sin θ

∂

∂ϕ
~eϕ

gradf =
∂f

∂r
~er +

1
r

∂f

∂θ
~eθ +

1
r sin θ

∂f

∂ϕ
~eϕ

div ~a =
∂ar

∂r
+

2ar

r
+

1
r

∂aθ

∂θ
+

aθ

r tan θ
+

1
r sin θ

∂aϕ

∂ϕ

curl ~a =
(

1
r

∂aϕ

∂θ
+

aθ

r tan θ
− 1
r sin θ

∂aθ

∂ϕ

)
~er +

(
1

r sin θ
∂ar

∂ϕ
− ∂aϕ

∂r
− aϕ

r

)
~eθ +(

∂aθ

∂r
+
aθ

r
− 1
r

∂ar

∂θ

)
~eϕ

∇2f =
∂2f

∂r2
+

2
r

∂f

∂r
+

1
r2
∂2f

∂θ2
+

1
r2 tan θ

∂f

∂θ
+

1
r2 sin2 θ

∂2f

∂ϕ2

General orthonormal curvilinear coordinates (u, v, w) can be derived from cartesian coordinates by the
transformation ~x = ~x(u, v, w). The unit vectors are given by:

~eu =
1
h1

∂~x

∂u
, ~ev =

1
h2

∂~x

∂v
, ~ew =

1
h3

∂~x

∂w

where the terms hi give normalization to length 1. The differential operators are than given by:

gradf =
1
h1

∂f

∂u
~eu +

1
h2

∂f

∂v
~ev +

1
h3

∂f

∂w
~ew

div ~a =
1

h1h2h3

(
∂

∂u
(h2h3au) +

∂

∂v
(h3h1av) +

∂

∂w
(h1h2aw)

)
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curl ~a =
1

h2h3

(
∂(h3aw)
∂v

− ∂(h2av)
∂w

)
~eu +

1
h3h1

(
∂(h1au)
∂w

− ∂(h3aw)
∂u

)
~ev +

1
h1h2

(
∂(h2av)
∂u

− ∂(h1au)
∂v

)
~ew

∇2f =
1

h1h2h3

[
∂

∂u

(
h2h3

h1

∂f

∂u

)
+

∂

∂v

(
h3h1

h2

∂f

∂v

)
+

∂

∂w

(
h1h2

h3

∂f

∂w

)]
Some properties of the ∇-operator are:

div(φ~v) = φdiv~v + gradφ · ~v curl(φ~v) = φcurl~v + (gradφ)× ~v curl gradφ = ~0
div(~u× ~v) = ~v · (curl~u)− ~u · (curl~v) curl curl~v = grad div~v −∇2~v div curl~v = 0
div gradφ = ∇2φ ∇2~v ≡ (∇2v1,∇2v2,∇2v3)

Here, ~v is an arbitrary vectorfield and φ an arbitrary scalar field.

3.2.5 Integral theorems

Some important integral theorems are:

Gauss:
∫∫
© (~v · ~n)d2A =

∫∫∫
(div~v )d3V

Stokes for a scalar field:
∮

(φ · ~et)ds =
∫∫

(~n× gradφ)d2A

Stokes for a vector field:
∮

(~v · ~et)ds =
∫∫

(curl~v · ~n)d2A

this gives:
∫∫
© (curl~v · ~n)d2A = 0

Ostrogradsky:
∫∫
© (~n× ~v )d2A =

∫∫∫
(curl~v )d3A∫∫

© (φ~n )d2A =
∫∫∫

(gradφ)d3V

Here the orientable surface
∫∫

d2A is bounded by the Jordan curve s(t).

3.2.6 Multiple integrals

Let A be a closed curve given by f(x, y) = 0, than the surface A inside the curve in IR2 is given by

A =
∫∫

d2A =
∫∫

dxdy

Let the surface A be defined by the function z = f(x, y). The volume V bounded by A and the xy plane
is than given by:

V =
∫∫

f(x, y)dxdy
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The volume inside a closed surface defined by z = f(x, y) is given by:

V =
∫∫∫

d3V =
∫∫

f(x, y)dxdy =
∫∫∫

dxdydz

3.2.7 Coordinate transformations

The expressions d2A and d3V transform as follows when one changes coordinates to ~u = (u, v, w) through
the transformation x(u, v, w):

V =
∫∫∫

f(x, y, z)dxdydz =
∫∫∫

f(~x(~u))
∣∣∣∣∂~x∂~u

∣∣∣∣ dudvdw
In IR2 holds:

∂~x

∂~u
=
∣∣∣∣ xu xv

yu yv

∣∣∣∣
Let the surface A be defined by z = F (x, y) = X(u, v). Than the volume bounded by the xy plane and F
is given by:∫∫

S

f(~x)d2A =
∫∫

G

f(~x(~u))
∣∣∣∣∂X∂u × ∂X

∂v

∣∣∣∣ dudv =
∫∫

G

f(x, y, F (x, y))
√

1 + ∂xF 2 + ∂yF 2dxdy

3.3 Orthogonality of functions

The inner product of two functions f(x) and g(x) on the interval [a, b] is given by:

(f, g) =

b∫
a

f(x)g(x)dx

or, when using a weight function p(x), by:

(f, g) =

b∫
a

p(x)f(x)g(x)dx

The norm ‖f‖ follows from: ‖f‖2 = (f, f). A set functions fi is orthonormal if (fi, fj) = δij .

Each function f(x) can be written as a sum of orthogonal functions:

f(x) =
∞∑

i=0

cigi(x)

and
∑
c2i ≤ ‖f‖2. Let the set gi be orthogonal, than it follows:

ci =
f, gi

(gi, gi)
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3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal
basis (cos(nx), sin(nx)) we have a Fourier series.

A periodical function f(x) with period 2L can be written as:

f(x) = a0 +
∞∑

n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
Due to the orthogonality follows for the coefficients:

a0 =
1

2L

L∫
−L

f(t)dt , an =
1
L

L∫
−L

f(t) cos
(
nπt

L

)
dt , bn =

1
L

L∫
−L

f(t) sin
(
nπt

L

)
dt

A Fourier series can also be written as a sum of complex exponents:

f(x) =
∞∑

n=−∞
cneinx

with

cn =
1
2π

π∫
−π

f(x)e−inxdx

The Fourier transform of a function f(x) gives the transformed function f̂(ω):

f̂(ω) =
1√
2π

∞∫
−∞

f(x)e−iωxdx

The inverse transformation is given by:

1
2
[
f(x+) + f(x−)

]
=

1√
2π

∞∫
−∞

f̂(ω)eiωxdω

where f(x+) and f(x−) are defined by the lower - and upper limit:

f(a−) = lim
x↑a

f(x) , f(a+) = lim
x↓a

f(x)

For continuous functions is 1
2 [f(x+) + f(x−)] = f(x).
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Differential equations

4.1 Linear differential equations

4.1.1 First order linear DE

The general solution of a linear differential equation is given by yA = yH + yP, where yH is the solution of
the homogeneous equation and yP is a particular solution.

A first order differential equation is given by: y′(x) + a(x)y(x) = b(x). Its homogeneous equation is
y′(x) + a(x)y(x) = 0.

The solution of the homogeneous equation is given by

yH = k exp
(∫

a(x)dx
)

Suppose that a(x) = a =constant.

Substitution of exp(λx) in the homogeneous equation leads to the characteristic equation λ+ a = 0
⇒ λ = −a.

Suppose b(x) = α exp(µx). Than one can distinguish two cases:

1. λ 6= µ: a particular solution is: yP = exp(µx)

2. λ = µ: a particular solution is: yP = x exp(µx)

When a DE is solved by variation of parameters one writes: yP(x) = yH(x)f(x), and than one solves f(x)
from this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is given by: y′′(x) + ay′(x) + by(x) =
c(x). If c(x) = c =constant there exists a particular solution yP = c/b.

Substitution of y = exp(λx) leads to the characteristic equation λ2 + aλ+ b = 0.

There are now 2 possibilities:

1. λ1 6= λ2: than yH = α exp(λ1x) + β exp(λ2x).

2. λ1 = λ2 = λ: than yH = (α+ βx) exp(λx).

23
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If c(x) = p(x) exp(µx) where p(x) is a polynomial there are 3 possibilities:

1. λ1, λ2 6= µ: yP = q(x) exp(µx).

2. λ1 = µ, λ2 6= µ: yP = xq(x) exp(µx).

3. λ1 = λ2 = µ: yP = x2q(x) exp(µx).

where q(x) is a polynomial of the same order as p(x).

When: y′′(x) + ω2y(x) = ωf(x) and y(0) = y′(0) = 0 follows: y(x) =
x∫
0

f(x) sin(ω(x− t))dt.

4.1.3 The Wronskian

We start with the LDE y′′(x) + p(x)y′(x) + q(x)y(x) = 0 and the two initial conditions y(x0) = K0 and
y′(x0) = K1. When p(x) and q(x) are continuous on the open interval I there exists a unique solution
y(x) on this interval.

The general solution can than be written as y(x) = c1y1(x)+c2y2(x) and y1 and y2 are linear independent.
These are also all solutions of the LDE.

The Wronskian is defined by:

W (y1, y2) =
∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1

y1 and y2 are linear independent if and only if on the interval I when ∃x0 ∈ I so that holds:
W (y1(x0), y2(x0)) = 0.

4.1.4 Power series substitution

When a series y =
∑
anx

n is substituted in the LDE with constant coefficients y′′(x) + py′(x) + qy(x) = 0
this leads to: ∑

n

[
n(n− 1)anx

n−2 + pnanx
n−1 + qanx

n
]

= 0

Setting coefficients for equal powers of x equal gives:

(n+ 2)(n+ 1)an+2 + p(n+ 1)an+1 + qan = 0

This gives a general relation between the coefficients. Special cases are n = 0, 1, 2.

4.2 Some special cases

4.2.1 Frobenius’ method

Given the LDE
d2y(x)
dx2

+
b(x)
x

dy(x)
dx

+
c(x)
x2

y(x) = 0
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with b(x) and c(x) analytical at x = 0. This LDE has at least one solution of the form

yi(x) = xri

∞∑
n=0

anx
n with i = 1, 2

with r real or complex and chosen so that a0 6= 0. When one expands b(x) and c(x) as b(x) = b0 + b1x+
b2x

2 + ... and c(x) = c0 + c1x+ c2x
2 + ..., it follows for r:

r2 + (b0 − 1)r + c0 = 0

There are now 3 possibilities:

1. r1 = r2: than y(x) = y1(x) ln |x|+ y2(x).

2. r1 − r2 ∈ IN : than y(x) = ky1(x) ln |x|+ y2(x).

3. r1 − r2 6= ZZ: than y(x) = y1(x) + y2(x).

4.2.2 Euler

Given the LDE

x2 d
2y(x)
dx2

+ ax
dy(x)
dx

+ by(x) = 0

Substitution of y(x) = xr gives an equation for r: r2 + (a− 1)r + b = 0. From this one gets two solutions
r1 and r2. There are now 2 possibilities:

1. r1 6= r2: than y(x) = C1x
r1 + C2x

r2 .

2. r1 = r2 = r: than y(x) = (C1 ln(x) + C2)xr.

4.2.3 Legendre’s DE

Given the LDE

(1− x2)
d2y(x)
dx2

− 2x
dy(x)
dx

+ n(n− 1)y(x) = 0

The solutions of this equation are given by y(x) = aPn(x) + by2(x) where the Legendre polynomials P (x)
are defined by:

Pn(x) =
dn

dxn

(
(1− x2)n

2nn!

)
For these holds: ‖Pn‖2 = 2/(2n+ 1).

4.2.4 The associated Legendre equation

This equation follows from the θ-dependent part of the wave equation ∇2Ψ = 0 by substitution of
ξ = cos(θ). Than follows:

(1− ξ2)
d

dξ

(
(1− ξ2)

dP (ξ)
dξ

)
+ [C(1− ξ2)−m2]P (ξ) = 0
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Regular solutions exists only if C = l(l + 1). They are of the form:

P
|m|
l (ξ) = (1− ξ2)m/2 d

|m|P 0(ξ)
dξ|m|

=
(1− ξ2)|m|/2

2ll!
d|m|+l

dξ|m|+l
(ξ2 − 1)l

For |m| > l is P |m|l (ξ) = 0. Some properties of P 0
l (ξ) zijn:

1∫
−1

P 0
l (ξ)P 0

l′(ξ)dξ =
2

2l + 1
δll′ ,

∞∑
l=0

P 0
l (ξ)tl =

1√
1− 2ξt+ t2

This polynomial can be written as:

P 0
l (ξ) =

1
π

π∫
0

(ξ +
√
ξ2 − 1 cos(θ))ldθ

4.2.5 Solutions for Bessel’s equation

Given the LDE

x2 d
2y(x)
dx2

+ x
dy(x)
dx

+ (x2 − ν2)y(x) = 0

also called Bessel’s equation, and the Bessel functions of the first kind

Jν(x) = xν
∞∑

m=0

(−1)mx2m

22m+νm!Γ(ν +m+ 1)

for ν := n ∈ IN this becomes:

Jn(x) = xn
∞∑

m=0

(−1)mx2m

22m+nm!(n+m)!

When ν 6= ZZ the solution is given by y(x) = aJν(x) + bJ−ν(x). But because for n ∈ ZZ holds:
J−n(x) = (−1)nJn(x), this does not apply to integers. The general solution of Bessel’s equation is given
by y(x) = aJν(x) + bYν(x), where Yν are the Bessel functions of the second kind:

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
and Yn(x) = lim

ν→n
Yν(x)

The equation x2y′′(x) + xy′(x) − (x2 + ν2)y(x) = 0 has the modified Bessel functions of the first kind
Iν(x) = i−νJν(ix) as solution, and also solutions Kν = π[I−ν(x)− Iν(x)]/[2 sin(νπ)].

Sometimes it can be convenient to write the solutions of Bessel’s equation in terms of the Hankel functions

H(1)
n (x) = Jn(x) + iYn(x) , H(2)

n (x) = Jn(x)− iYn(x)
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4.2.6 Properties of Bessel functions

Bessel functions are orthogonal with respect to the weight function p(x) = x.

J−n(x) = (−1)nJn(x). The Neumann functions Nm(x) are definied as:

Nm(x) =
1
2π
Jm(x) ln(x) +

1
xm

∞∑
n=0

αnx
2n

The following holds: lim
x→0

Jm(x) = xm, lim
x→0

Nm(x) = x−m for m 6= 0, lim
x→0

N0(x) = ln(x).

lim
r→∞

H(r) =
e±ikreiωt

√
r

, lim
x→∞

Jn(x) =

√
2
πx

cos(x− xn) , lim
x→∞

J−n(x) =

√
2
πx

sin(x− xn)

with xn = 1
2π(n+ 1

2 ).

Jn+1(x) + Jn−1(x) =
2n
x
Jn(x) , Jn+1(x)− Jn−1(x) = −2

dJn(x)
dx

The following integral relations hold:

Jm(x) =
1
2π

2π∫
0

exp[i(x sin(θ)−mθ)]dθ =
1
π

π∫
0

cos(x sin(θ)−mθ)dθ

4.2.7 Laguerre’s equation

Given the LDE

x
d2y(x)
dx2

+ (1− x)
dy(x)
dx

+ ny(x) = 0

Solutions of this equation are the Laguerre polynomials Ln(x):

Ln(x) =
ex

n!
dn

dxn

(
xne−x

)
=
∞∑

m=0

(−1)m

m!

(
n

m

)
xm

4.2.8 The associated Laguerre equation

Given the LDE
d2y(x)
dx2

+
(
m+ 1
x

− 1
)
dy(x)
dx

+
(
n+ 1

2 (m+ 1)
x

)
y(x) = 0

Solutions of this equation are the associated Laguerre polynomials Lm
n (x):

Lm
n (x) =

(−1)mn!
(n−m)!

e−xx−m dn−m

dxn−m

(
e−xxn

)
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4.2.9 Hermite

The differential equations of Hermite are:

d2Hn(x)
dx2

− 2x
dHn(x)
dx

+ 2nHn(x) = 0 and
d2Hen(x)
dx2

− x
dHen(x)
dx

+ nHen(x) = 0

Solutions of these equations are the Hermite polynomials, given by:

Hn(x) = (−1)n exp
(

1
2
x2

)
dn(exp(− 1

2x
2))

dxn
= 2n/2Hen(x

√
2)

Hen(x) = (−1)n(exp
(
x2
) dn(exp(−x2))

dxn
= 2−n/2Hn(x/

√
2)

4.2.10 Chebyshev

The LDE

(1− x2)
d2Un(x)
dx2

− 3x
dUn(x)
dx

+ n(n+ 2)Un(x) = 0

has solutions of the form

Un(x) =
sin[(n+ 1) arccos(x)]√

1− x2

The LDE

(1− x2)
d2Tn(x)
dx2

− x
dTn(x)
dx

+ n2Tn(x) = 0

has solutions Tn(x) = cos(n arccos(x)).

4.2.11 Weber

The LDE W ′′n (x) + (n+ 1
2 −

1
4x

2)Wn(x) = 0 has solutions: Wn(x) = Hen(x) exp(− 1
4x

2).

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

y′ = a
√
y2 + b2 y = b sinh(a(x− x0))

y′ = a
√
y2 − b2 y = b cosh(a(x− x0))

y′ = a
√
b2 − y2 y = b cos(a(x− x0))

y′ = a(y2 + b2) y = b tan(a(x− x0))
y′ = a(y2 − b2) y = b coth(a(x− x0))
y′ = a(b2 − y2) y = b tanh(a(x− x0))

y′ = ay

(
b− y

b

)
y =

b

1 + Cb exp(−ax)
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4.4 Sturm-Liouville equations

Sturm-Liouville equations are second order LDE’s of the form:

− d

dx

(
p(x)

dy(x)
dx

)
+ q(x)y(x) = λm(x)y(x)

The boundary conditions are chosen so that the operator

L = − d

dx

(
p(x)

d

dx

)
+ q(x)

is Hermitean. The normalization function m(x) must satisfy

b∫
a

m(x)yi(x)yj(x)dx = δij

When y1(x) and y2(x) are two linear independent solutions one can write the Wronskian in this form:

W (y1, y2) =
∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = C

p(x)

where C is constant. By changing to another dependent variable u(x), given by: u(x) = y(x)
√
p(x), the

LDE transforms into the normal form:

d2u(x)
dx2

+ I(x)u(x) = 0 with I(x) =
1
4

(
p′(x)
p(x)

)2

− 1
2
p′′(x)
p(x)

− q(x)− λm(x)
p(x)

If I(x) > 0, than y′′/y < 0 and the solution has an oscillatory behaviour, if I(x) < 0, than y′′/y > 0 and
the solution has an exponential behaviour.

4.5 Linear partial differential equations

4.5.1 General

The normal derivative is defined by:
∂u

∂n
= (~∇u, ~n)

A frequently used solution method for PDE’s is separation of variables: one assumes that the solution
can be written as u(x, t) = X(x)T (t). When this is substituted two ordinary DE’s for X(x) and T (t) are
obtained.

4.5.2 Special cases

The wave equation

The wave equation in 1 dimension is given by

∂2u

∂t2
= c2

∂2u

∂x2
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When the initial conditions u(x, 0) = ϕ(x) and ∂u(x, 0)/∂t = Ψ(x) apply, the general solution is given by:

u(x, t) =
1
2

[ϕ(x+ ct) + ϕ(x− ct)] +
1
2c

x+ct∫
x−ct

Ψ(ξ)dξ

The diffusion equation

The diffusion equation is:
∂u

∂t
= D∇2u

Its solutions can be written in terms of the propagators P (x, x′, t). These have the property that
P (x, x′, 0) = δ(x− x′). In 1 dimension it reads:

P (x, x′, t) =
1

2
√
πDt

exp
(
−(x− x′)2

4Dt

)
In 3 dimensions it reads:

P (x, x′, t) =
1

8(πDt)3/2
exp

(
−(~x− ~x ′)2

4Dt

)
With initial condition u(x, 0) = f(x) the solution is:

u(x, t) =
∫
G

f(x′)P (x, x′, t)dx′

The solution of the equation
∂u

∂t
−D

∂2u

∂x2
= g(x, t)

is given by

u(x, t) =
∫
dt′
∫
dx′g(x′, t′)P (x, x′, t− t′)

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution of u(~x, t) = v(~x) exp(iωt) in the wave equation.
This gives for v:

∇2v(~x, ω) + k2v(~x, ω) = 0

This gives as solutions for v:

1. In cartesian coordinates: substitution of v = A exp(i~k · ~x ) gives:

v(~x ) =
∫
· · ·
∫
A(k)ei~k·~xdk

with the integrals over ~k 2 = k2.
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2. In polar coordinates:

v(r, ϕ) =
∞∑

m=0

(AmJm(kr) +BmNm(kr))eimϕ

3. In spherical coordinates:

v(r, θ, ϕ) =
∞∑

l=0

l∑
m=−l

[AlmJl+ 1
2
(kr) +BlmJ−l− 1

2
(kr)]

Y (θ, ϕ)√
r

4.5.3 Potential theory and Green’s theorem

Subject of the potential theory are the Poisson equation ∇2u = −f(~x ) where f is a given function, and the
Laplace equation ∇2u = 0. The solutions of these can often be interpreted as a potential. The solutions of
Laplace’s equation are called harmonic functions.

When a vector field ~v is given by ~v = gradϕ holds:

b∫
a

(~v,~t )ds = ϕ(~b )− ϕ(~a )

In this case there exist functions ϕ and ~w so that ~v = gradϕ+ curl~w.

The field lines of the field ~v(~x ) follow from:

~̇x (t) = λ~v(~x )

The first theorem of Green is: ∫∫∫
G

[u∇2v + (∇u,∇v)]d3V =
∫∫
©
S

u
∂v

∂n
d2A

The second theorem of Green is:∫∫∫
G

[u∇2v − v∇2u]d3V =
∫∫
©
S

(
u
∂v

∂n
− v

∂u

∂n

)
d2A

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function
with a normal derivative of 0 on the boundary of an area is constant within that area.

The Dirichlet problem is:

∇2u(~x ) = −f(~x ) , ~x ∈ R , u(~x ) = g(~x ) for all ~x ∈ S.

It has a unique solution.

The Neumann problem is:

∇2u(~x ) = −f(~x ) , ~x ∈ R ,
∂u(~x )
∂n

= h(~x ) for all ~x ∈ S.
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The solution is unique except for a constant. The solution exists if:

−
∫∫∫

R

f(~x )d3V =
∫∫
©
S

h(~x )d2A

A fundamental solution of the Laplace equation satisfies:

∇2u(~x ) = −δ(~x )

This has in 2 dimensions in polar coordinates the following solution:

u(r) =
ln(r)
2π

This has in 3 dimensions in spherical coordinates the following solution:

u(r) =
1

4πr

The equation ∇2v = −δ(~x− ~ξ ) has the solution

v(~x ) =
1

4π|~x− ~ξ |

After substituting this in Green’s 2nd theorem and applying the sieve property of the δ function one can
derive Green’s 3rd theorem:

u(~ξ ) = − 1
4π

∫∫∫
R

∇2u

r
d3V +

1
4π

∫∫
©
S

[
1
r

∂u

∂n
− u

∂

∂n

(
1
r

)]
d2A

The Green function G(~x, ~ξ ) is defined by: ∇2G = −δ(~x− ~ξ ), and on boundary S holds G(~x, ~ξ ) = 0. Than
G can be written as:

G(~x, ~ξ ) =
1

4π|~x− ~ξ |
+ g(~x, ~ξ )

Than g(~x, ~ξ ) is a solution of Dirichlet’s problem. The solution of Poisson’s equation ∇2u = −f(~x ) when
on the boundary S holds: u(~x ) = g(~x ), is:

u(~ξ ) =
∫∫∫

R

G(~x, ~ξ )f(~x )d3V −
∫∫
©
S

g(~x )
∂G(~x, ~ξ )

∂n
d2A
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