Mathematics Formulary

By ir. J.C.A. Wevers

Dear reader,
This document contains 66 pages with mathematical equations intended for physicists and engineers. It is intended to be a short reference for anyone who often needs to look up mathematical equations.

This document can also be obtained from the author, Johan Wevers (johanw@vulcan.xs4all.nl).
It can also be found on the WWW on http://www.xs4all.nl/~johanw/index.html.
This document is Copyright by J.C.A. Wevers. All rights reserved. Permission to use, copy and distribute this unmodified document by any means and for any purpose except profit purposes is hereby granted. Reproducing this document by any means, included, but not limited to, printing, copying existing prints, publishing by electronic or other means, implies full agreement to the above non-profit-use clause, unless upon explicit prior written permission of the author.
The C code for the rootfinding via Newtons method and the FFT in chapter 8 are from "Numerical Recipes in $C ", 2 n d$ Edition, ISBN 0-521-43108-5.

The Mathematics Formulary is made with $\operatorname{teT}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ version 2.09.
If you prefer the notation in which vectors are typefaced in boldface, uncomment the redefinition of the \vec command and recompile the file.

If you find any errors or have any comments, please let me know. I am always open for suggestions and possible corrections to the mathematics formulary.

Johan Wevers

Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a point p on the unit circle holds:

$$
\cos (\phi)=x_{p} \quad, \quad \sin (\phi)=y_{p} \quad, \quad \tan (\phi)=\frac{y_{p}}{x_{p}}
$$

$\sin ^{2}(x)+\cos ^{2}(x)=1$ and $\cos ^{-2}(x)=1+\tan ^{2}(x)$.

$$
\begin{gathered}
\cos (a \pm b)=\cos (a) \cos (b) \mp \sin (a) \sin (b), \quad \sin (a \pm b)=\sin (a) \cos (b) \pm \cos (a) \sin (b) \\
\tan (a \pm b)=\frac{\tan (a) \pm \tan (b)}{1 \mp \tan (a) \tan (b)}
\end{gathered}
$$

The sum formulas are:

$$
\begin{aligned}
\sin (p)+\sin (q) & =2 \sin \left(\frac{1}{2}(p+q)\right) \cos \left(\frac{1}{2}(p-q)\right) \\
\sin (p)-\sin (q) & =2 \cos \left(\frac{1}{2}(p+q)\right) \sin \left(\frac{1}{2}(p-q)\right) \\
\cos (p)+\cos (q) & =2 \cos \left(\frac{1}{2}(p+q)\right) \cos \left(\frac{1}{2}(p-q)\right) \\
\cos (p)-\cos (q) & =-2 \sin \left(\frac{1}{2}(p+q)\right) \sin \left(\frac{1}{2}(p-q)\right)
\end{aligned}
$$

From these equations can be derived that

$$
\begin{array}{rll}
2 \cos ^{2}(x)=1+\cos (2 x) & , & 2 \sin ^{2}(x)=1-\cos (2 x) \\
\sin (\pi-x)=\sin (x) & , & \cos (\pi-x)=-\cos (x) \\
\sin \left(\frac{1}{2} \pi-x\right)=\cos (x) & , & \cos \left(\frac{1}{2} \pi-x\right)=\sin (x)
\end{array}
$$

Conclusions from equalities:

$$
\begin{array}{lll}
\frac{\sin (x)=\sin (a)}{\cos (x)=\cos (a)} & \Rightarrow & x=a \pm 2 k \pi \text { or } x=(\pi-a) \pm 2 k \pi, \quad k \in I N \\
\underline{\tan (x)=\tan (a)} & \Rightarrow & x=a \pm 2 k \pi \text { or } x=-a \pm 2 k \pi \\
\underline{x}=a \pm k \pi \text { and } x \neq \frac{\pi}{2} \pm k \pi
\end{array}
$$

The following relations exist between the inverse goniometric functions:

$$
\arctan (x)=\arcsin \left(\frac{x}{\sqrt{x^{2}+1}}\right)=\arccos \left(\frac{1}{\sqrt{x^{2}+1}}\right) \quad, \quad \sin (\arccos (x))=\sqrt{1-x^{2}}
$$

1.2 Hyperbolic functions

The hyperbolic functions are defined by:

$$
\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, \quad \cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}, \quad \tanh (x)=\frac{\sinh (x)}{\cosh (x)}
$$

From this follows that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$. Further holds:

$$
\operatorname{arsinh}(x)=\ln \left|x+\sqrt{x^{2}+1}\right| \quad, \quad \operatorname{arcosh}(x)=\operatorname{arsinh}\left(\sqrt{x^{2}-1}\right)
$$

1.3 Calculus

The derivative of a function is defined as:

$$
\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivatives obey the following algebraic rules:

$$
d(x \pm y)=d x \pm d y \quad, \quad d(x y)=x d y+y d x \quad, \quad d\left(\frac{x}{y}\right)=\frac{y d x-x d y}{y^{2}}
$$

For the derivative of the inverse function $f^{\text {inv }}(y)$, defined by $f^{\text {inv }}(f(x))=x$, holds at point $P=(x, f(x))$:

$$
\left(\frac{d f^{\mathrm{inv}}(y)}{d y}\right)_{P} \cdot\left(\frac{d f(x)}{d x}\right)_{P}=1
$$

Chain rule: if $f=f(g(x))$, then holds

$$
\frac{d f}{d x}=\frac{d f}{d g} \frac{d g}{d x}
$$

Further, for the derivatives of products of functions holds:

$$
(f \cdot g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} \cdot g^{(k)}
$$

For the primitive function $F(x)$ holds: $F^{\prime}(x)=f(x)$. An overview of derivatives and primitives is:

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{d y} / \boldsymbol{d x}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\int \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}$
$a x^{n}$	$a n x^{n-1}$	$a(n+1)^{-1} x^{n+1}$
$1 / x$	$-x^{-2}$	$\ln \|x\|$
a	0	$a x$
a^{x}	$a^{x} \ln (a)$	$a^{x} / \ln (a)$
e^{x}	e^{x}	$(x \ln (x)-x) / \ln (a)$
${ }^{x} \log (x)$	$(x \ln (a))^{-1}$	$(x \ln (x)$
$\ln (x)$	$1 / x$	$x \ln (x)-x$
$\sin (x)$	$\cos (x)$	$-\cos (x)$
$\cos (x)$	$-\sin (x)$	$\sin (x)$
$\tan (x)$	$\cos ^{-2}(x)$	$-\ln \|\cos (x)\|$
$\sin ^{-1}(x)$	$-\sin ^{-2}(x) \cos (x)$	$\ln \left\|\tan \left(\frac{1}{2} x\right)\right\|$
$\sinh (x)$	$\cosh ^{2}(x)$	$\cosh (x)$
$\cosh (x)$	$\sinh (x)$	$\sinh (x)$
$\arcsin (x)$	$1 / \sqrt{1-x^{2}}$	$x \arcsin (x)+\sqrt{1-x^{2}}$
$\arccos (x)$	$-1 / \sqrt{1-x^{2}}$	$x \arccos (x)-\sqrt{1-x^{2}}$
$\arctan (x)$	$\left(1+x^{2}\right)^{-1}$	$x \arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)$
$\left(a+x^{2}\right)^{-1 / 2}$	$-x\left(a+x^{2}\right)^{-3 / 2}$	$\ln \left\|x+\sqrt{a+x^{2}}\right\|$
$\left(a^{2}-x^{2}\right)^{-1}$	$2 x\left(a^{2}+x^{2}\right)^{-2}$	$\frac{1}{2 a} \ln \|(a+x) /(a-x)\|$

The curvature ρ of a curve is given by: $\rho=\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}{\left|y^{\prime \prime}\right|}$
The theorem of De 'l Hôpital: if $f(a)=0$ and $g(a)=0$, then is $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

1.4 Limits

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1, \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{x}=1, \lim _{x \rightarrow 0} \frac{\tan (x)}{x}=1, \lim _{k \rightarrow 0}(1+k)^{1 / k}=\mathrm{e}, \quad \lim _{x \rightarrow \infty}\left(1+\frac{n}{x}\right)^{x}=\mathrm{e}^{n} \\
\lim _{x \downarrow 0} x^{a} \ln (x)=0, \lim _{x \rightarrow \infty} \frac{\ln ^{p}(x)}{x^{a}}=0, \lim _{x \rightarrow 0} \frac{\ln (x+a)}{x}=a, \lim _{x \rightarrow \infty} \frac{x^{p}}{a^{x}}=0 \text { als }|a|>1 . \\
\lim _{x \rightarrow 0}\left(a^{1 / x}-1\right)=\ln (a), \lim _{x \rightarrow 0} \frac{\arcsin (x)}{x}=1, \lim _{x \rightarrow \infty} \sqrt[x]{x}=1
\end{gathered}
$$

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number $z=a+b i$ with a and $b \in \mathbb{R} . a$ is the real part, b the imaginary part of z. $|z|=\sqrt{a^{2}+b^{2}}$. By definition holds: $i^{2}=-1$. Every complex number can be written as $z=|z| \exp (i \varphi)$,
with $\tan (\varphi)=b / a$. The complex conjugate of z is defined as $\bar{z}=z^{*}:=a-b i$. Further holds:

$$
\begin{aligned}
(a+b i)(c+d i) & =(a c-b d)+i(a d+b c) \\
(a+b i)+(c+d i) & =a+c+i(b+d) \\
\frac{a+b i}{c+d i} & =\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}}
\end{aligned}
$$

Goniometric functions can be written as complex exponents:

$$
\begin{aligned}
\sin (x) & =\frac{1}{2 i}\left(\mathrm{e}^{i x}-\mathrm{e}^{-i x}\right) \\
\cos (x) & =\frac{1}{2}\left(\mathrm{e}^{i x}+\mathrm{e}^{-i x}\right)
\end{aligned}
$$

From this follows that $\cos (i x)=\cosh (x)$ and $\sin (i x)=i \sinh (x)$. Further follows from this that $\mathrm{e}^{ \pm i x}=\cos (x) \pm i \sin (x)$, so $\mathrm{e}^{i z} \neq 0 \forall z$. Also the theorem of De Moivre follows from this:
$(\cos (\varphi)+i \sin (\varphi))^{n}=\cos (n \varphi)+i \sin (n \varphi)$.
Products and quotients of complex numbers can be written as:

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left|z_{1}\right| \cdot\left|z_{2}\right|\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right) \\
\frac{z_{1}}{z_{2}} & =\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\left(\cos \left(\varphi_{1}-\varphi_{2}\right)+i \sin \left(\varphi_{1}-\varphi_{2}\right)\right)
\end{aligned}
$$

The following can be derived:

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|, \quad\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|
$$

And from $z=r \exp (i \theta)$ follows: $\ln (z)=\ln (r)+i \theta, \ln (z)=\ln (z) \pm 2 n \pi i$.

1.5.2 Quaternions

Quaternions are defined as: $z=a+b i+c j+d k$, with $a, b, c, d \in \mathbb{R}$ and $i^{2}=j^{2}=k^{2}=-1$. The products of i, j, k with each other are given by $i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$.

1.6 Geometry

1.6.1 Triangles

The sine rule is:

$$
\frac{a}{\sin (\alpha)}=\frac{b}{\sin (\beta)}=\frac{c}{\sin (\gamma)}
$$

Here, α is the angle opposite to a, β is opposite to b and γ opposite to c. The cosine rule is: $a^{2}=$ $b^{2}+c^{2}-2 b c \cos (\alpha)$. For each triangle holds: $\alpha+\beta+\gamma=180^{\circ}$.

Further holds:

$$
\frac{\tan \left(\frac{1}{2}(\alpha+\beta)\right)}{\tan \left(\frac{1}{2}(\alpha-\beta)\right)}=\frac{a+b}{a-b}
$$

The surface of a triangle is given by $\frac{1}{2} a b \sin (\gamma)=\frac{1}{2} a h_{a}=\sqrt{s(s-a)(s-b)(s-c)}$ with h_{a} the perpendicular on a and $s=\frac{1}{2}(a+b+c)$.

1.6.2 Curves

Cycloid: if a circle with radius a rolls along a straight line, the trajectory of a point on this circle has the following parameter equation:

$$
x=a(t+\sin (t)), \quad y=a(1+\cos (t))
$$

Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point on the small circle has the following parameter equation:

$$
x=a \sin \left(\frac{R+a}{a} t\right)+(R+a) \sin (t) \quad, \quad y=a \cos \left(\frac{R+a}{a} t\right)+(R+a) \cos (t)
$$

Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a point on the small circle has the following parameter equation:

$$
x=a \sin \left(\frac{R-a}{a} t\right)+(R-a) \sin (t) \quad, \quad y=-a \cos \left(\frac{R-a}{a} t\right)+(R-a) \cos (t)
$$

A hypocycloid with $a=R$ is called a cardioid. It has the following parameterequation in polar coordinates: $r=2 a[1-\cos (\varphi)]$.

1.7 Vectors

The inner product is defined by: $\vec{a} \cdot \vec{b}=\sum_{i} a_{i} b_{i}=|\vec{a}| \cdot|\vec{b}| \cos (\varphi)$
where φ is the angle between \vec{a} and \vec{b}. The external product is in \mathbb{R}^{3} defined by:

$$
\vec{a} \times \vec{b}=\left(\begin{array}{c}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right)=\left|\begin{array}{ccc}
\vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
$$

Further holds: $|\vec{a} \times \vec{b}|=|\vec{a}| \cdot|\vec{b}| \sin (\varphi)$, and $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

1.8 Series

1.8.1 Expansion

The Binomium of Newton is:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

where $\binom{n}{k}:=\frac{n!}{k!(n-k)!}$.
By subtracting the series $\sum_{k=0}^{n} r^{k}$ and $r \sum_{k=0}^{n} r^{k}$ one finds:

$$
\sum_{k=0}^{n} r^{k}=\frac{1-r^{n+1}}{1-r}
$$

and for $|r|<1$ this gives the geometric series: $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$.
The arithmetic series is given by: $\sum_{n=0}^{N}(a+n V)=a(N+1)+\frac{1}{2} N(N+1) V$.
The expansion of a function around the point a is given by the Taylor series:

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2} f^{\prime \prime}(a)+\cdots+\frac{(x-a)^{n}}{n!} f^{(n)}(a)+R
$$

where the remainder is given by:

$$
R_{n}(h)=(1-\theta)^{n} \frac{h^{n}}{n!} f^{(n+1)}(\theta h)
$$

and is subject to:

$$
\frac{m h^{n+1}}{(n+1)!} \leq R_{n}(h) \leq \frac{M h^{n+1}}{(n+1)!}
$$

From this one can deduce that

$$
(1-x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

One can derive that:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945} \\
\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1), \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln (2) \\
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}=\frac{1}{2}, \quad \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}, \quad \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}=\frac{\pi^{4}}{96}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}}=\frac{\pi^{3}}{32}
\end{gathered}
$$

1.8.2 Convergence and divergence of series

If $\sum_{n}\left|u_{n}\right|$ converges, $\sum_{n} u_{n}$ also converges.
If $\lim _{n \rightarrow \infty} u_{n} \neq 0$ then $\sum_{n} u_{n}$ is divergent.
An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).
If $\int_{p}^{\infty} f(x) d x<\infty$, then $\sum_{n} f_{n}$ is convergent.
If $u_{n}>0 \forall n$ then is $\sum_{n} u_{n}$ convergent if $\sum_{n} \ln \left(u_{n}+1\right)$ is convergent.
If $u_{n}=c_{n} x^{n}$ the radius of convergence ρ of $\sum_{n} u_{n}$ is given by: $\frac{1}{\rho}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|$.

The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.
If: $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=p$, than the following is true: if $p>0$ than $\sum_{n} u_{n}$ and $\sum_{n} v_{n}$ are both divergent or both convergent, if $p=0$ holds: if $\sum_{n} v_{n}$ is convergent, than $\sum_{n} u_{n}$ is also convergent.
If L is defined by: $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|n_{n}\right|}$, or by: $L=\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|$, then is $\sum_{n} u_{n}$ divergent if $L>1$ and convergent if $L<1$.

1.8.3 Convergence and divergence of functions

$f(x)$ is continuous in $x=a$ only if the upper - and lower limit are equal: $\lim _{x \uparrow a} f(x)=\lim _{x \downarrow a} f(x)$. This is written as: $f\left(a^{-}\right)=f\left(a^{+}\right)$.

If $f(x)$ is continuous in a and: $\lim _{x \uparrow a} f^{\prime}(x)=\lim _{x \downarrow a} f^{\prime}(x)$, than $f(x)$ is differentiable in $x=a$.
We define: $\|f\|_{W}:=\sup (|f(x)| \mid x \in W)$, and $\lim _{x \rightarrow \infty} f_{n}(x)=f(x)$. Than holds: $\left\{f_{n}\right\}$ is uniform convergent if $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0$, or: $\forall(\varepsilon>0) \exists(N) \forall(n \geq N)\left\|f_{n}-f\right\|<\varepsilon$.

Weierstrass' test: if $\sum\left\|u_{n}\right\|_{W}$ is convergent, than $\sum u_{n}$ is uniform convergent.
We define $S(x)=\sum_{n=N}^{\infty} u_{n}(x)$ and $F(y)=\int_{a}^{b} f(x, y) d x:=F$. Than it can be proved that:

Theorem	For	Demands on W	Than holds on W
C	rows	f_{n} continuous, $\left\{f_{n}\right\}$ uniform convergent	f is continuous
	series	$S(x)$ uniform convergent, u_{n} continuous	S is continuous
	integral	f is continuous	F is continuous
	rows	f_{n} can be integrated, $\left\{f_{n}\right\}$ uniform convergent	f_{n} can be integrated, $\int f(x) d x=\lim _{n \rightarrow \infty} \int f_{n} d x$
	series	$S(x)$ is uniform convergent, u_{n} can be integrated	S can be integrated, $\int S d x=\sum \int u_{n} d x$
	integral	f is continuous	$\int F d y=\iint f(x, y) d x d y$
	rows	$\left\{f_{n}\right\} \in \mathrm{C}^{-1} ;\left\{f_{n}^{\prime}\right\}$ unif.conv $\rightarrow \phi$	$f^{\prime}=\phi(x)$
	series	$u_{n} \in \mathrm{C}^{-1} ; \sum u_{n}$ conv; $\sum u_{n}^{\prime}$ u.c.	$S^{\prime}(x)=\sum u_{n}^{\prime}(x)$
	integral	$\partial f / \partial y$ continuous	$F_{y}=\int f_{y}(x, y) d x$

1.9 Products and quotients

For $a, b, c, d \in \mathbb{R}$ holds:
The distributive property: $(a+b)(c+d)=a c+a d+b c+b d$
The associative property: $a(b c)=b(a c)=c(a b)$ and $a(b+c)=a b+a c$
The commutative property: $a+b=b+a, a b=b a$.
Further holds:

$$
\begin{aligned}
& \frac{a^{2 n}-b^{2 n}}{a \pm b}=a^{2 n-1} \pm a^{2 n-2} b+a^{2 n-3} b^{2} \pm \cdots \pm b^{2 n-1} \quad, \quad \frac{a^{2 n+1}-b^{2 n+1}}{a+b}=\sum_{k=0}^{n} a^{2 n-k} b^{2 k} \\
& \quad(a \pm b)\left(a^{2} \pm a b+b^{2}\right)=a^{3} \pm b^{3}, \quad(a+b)(a-b)=a^{2}+b^{2}, \quad \frac{a^{3} \pm b^{3}}{a+b}=a^{2} \mp b a+b^{2}
\end{aligned}
$$

1.10 Logarithms

Definition: ${ }^{a} \log (x)=b \Leftrightarrow a^{b}=x$. For logarithms with base e one writes $\ln (x)$.
Rules: $\log \left(x^{n}\right)=n \log (x), \log (a)+\log (b)=\log (a b), \log (a)-\log (b)=\log (a / b)$.

1.11 Polynomials

Equations of the type

$$
\sum_{k=0}^{n} a_{k} x^{k}=0
$$

have n roots which may be equal to each other. Each polynomial $p(z)$ of order $n \geq 1$ has at least one root in \mathbb{C}. If all $a_{k} \in \mathbb{R}$ holds: when $x=p$ with $p \in \mathbb{C}$ a root, than p^{*} is also a root. Polynomials up to and including order 4 have a general analytical solution, for polynomials with order ≥ 5 there does not exist a general analytical solution.

For $a, b, c \in \mathbb{R}$ and $a \neq 0$ holds: the 2 nd order equation $a x^{2}+b x+c=0$ has the general solution:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

For $a, b, c, d \in \mathbb{R}$ and $a \neq 0$ holds: the 3 rd order equation $a x^{3}+b x^{2}+c x+d=0$ has the general analytical solution:

$$
\begin{aligned}
x_{1} & =K-\frac{3 a c-b^{2}}{9 a^{2} K}-\frac{b}{3 a} \\
x_{2}=x_{3}^{*} & =-\frac{K}{2}+\frac{3 a c-b^{2}}{18 a^{2} K}-\frac{b}{3 a}+i \frac{\sqrt{3}}{2}\left(K+\frac{3 a c-b^{2}}{9 a^{2} K}\right)
\end{aligned}
$$

with $K=\left(\frac{9 a b c-27 d a^{2}-2 b^{3}}{54 a^{3}}+\frac{\sqrt{3} \sqrt{4 a c^{3}-c^{2} b^{2}-18 a b c d+27 a^{2} d^{2}+4 d b^{3}}}{18 a^{2}}\right)^{1 / 3}$

1.12 Primes

A prime is a number $\in I N$ that can only be divided by itself and 1 . There are an infinite number of primes. Proof: suppose that the collection of primes P would be finite, than construct the number $q=1+\prod_{p \in P} p$, than holds $q=1(p)$ and so Q cannot be written as a product of primes from P. This is a contradiction. If $\pi(x)$ is the number of primes $\leq x$, than holds:

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{\int_{2}^{x} \frac{d t}{\ln (t)}}=1
$$

For each $N \geq 2$ there is a prime between N and $2 N$.
The numbers $F_{k}:=2^{k}+1$ with $k \in I N$ are called Fermat numbers. Many Fermat numbers are prime.
The numbers $M_{k}:=2^{k}-1$ are called Mersenne numbers. They occur when one searches for perfect numbers, which are numbers $n \in I N$ which are the sum of their different dividers, for example $6=1+2+3$. There are 23 Mersenne numbers for $k<12000$ which are prime: for $k \in\{2,3,5,7,13,17,19,31,61,89,107,127,521$, $607,1279,2203,2281,3217,4253,4423,9689,9941,11213\}$.

To check if a given number n is prime one can use a sieve method. The first known sieve method was developed by Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don't prove that a number is prime but give a large probability.

1. Take the first 4 primes: $b=\{2,3,5,7\}$,
2. Take $w(b)=b^{n-1} \bmod n$, for each b,
3. If $w=1$ for each b, then n is probably prime. For each other value of w, n is certainly not prime.

Chapter 3

Calculus

3.1 Integrals

3.1.1 Arithmetic rules

The primitive function $F(x)$ of $f(x)$ obeys the rule $F^{\prime}(x)=f(x)$. With $F(x)$ the primitive of $f(x)$ holds for the definite integral

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

If $u=f(x)$ holds:

$$
\int_{a}^{b} g(f(x)) d f(x)=\int_{f(a)}^{f(b)} g(u) d u
$$

Partial integration: with F and G the primitives of f and g holds:

$$
\int f(x) \cdot g(x) d x=f(x) G(x)-\int G(x) \frac{d f(x)}{d x} d x
$$

A derivative can be brought under the intergral sign (see section 1.8 .3 for the required conditions):

$$
\frac{d}{d y}\left[\int_{x=g(y)}^{x=h(y)} f(x, y) d x\right]=\int_{x=g(y)}^{x=h(y)} \frac{\partial f(x, y)}{\partial y} d x-f(g(y), y) \frac{d g(y)}{d y}+f(h(y), y) \frac{d h(y)}{d y}
$$

3.1.2 Arc lengts, surfaces and volumes

The arc length ℓ of a curve $y(x)$ is given by:

$$
\ell=\int \sqrt{1+\left(\frac{d y(x)}{d x}\right)^{2}} d x
$$

The arc length ℓ of a parameter curve $F(\vec{x}(t))$ is:

$$
\ell=\int F d s=\int F(\vec{x}(t))|\dot{\vec{x}}(t)| d t
$$

with

$$
\begin{gathered}
\vec{t}=\frac{d \vec{x}}{d s}=\frac{\dot{\vec{x}}(t)}{|\dot{\vec{x}}(t)|} \quad, \quad|\vec{t}|=1 \\
\int(\vec{v}, \vec{t}) d s=\int(\vec{v}, \dot{\vec{t}}(t)) d t=\int\left(v_{1} d x+v_{2} d y+v_{3} d z\right)
\end{gathered}
$$

The surface A of a solid of revolution is:

$$
A=2 \pi \int y \sqrt{1+\left(\frac{d y(x)}{d x}\right)^{2}} d x
$$

The volume V of a solid of revolution is:

$$
V=\pi \int f^{2}(x) d x
$$

3.1.3 Separation of quotients

Every rational function $P(x) / Q(x)$ where P and Q are polynomials can be written as a linear combination of functions of the type $(x-a)^{k}$ with $k \in \mathbb{Z}$, and of functions of the type

$$
\frac{p x+q}{\left((x-a)^{2}+b^{2}\right)^{n}}
$$

with $b>0$ and $n \in I N$. So:

$$
\frac{p(x)}{(x-a)^{n}}=\sum_{k=1}^{n} \frac{A_{k}}{(x-a)^{k}} \quad, \quad \frac{p(x)}{\left((x-b)^{2}+c^{2}\right)^{n}}=\sum_{k=1}^{n} \frac{A_{k} x+B}{\left((x-b)^{2}+c^{2}\right)^{k}}
$$

Recurrent relation: for $n \neq 0$ holds:

$$
\int \frac{d x}{\left(x^{2}+1\right)^{n+1}}=\frac{1}{2 n} \frac{x}{\left(x^{2}+1\right)^{n}}+\frac{2 n-1}{2 n} \int \frac{d x}{\left(x^{2}+1\right)^{n}}
$$

3.1.4 Special functions

Elliptic functions

Elliptic functions can be written as a power series as follows:

$$
\begin{gathered}
\sqrt{1-k^{2} \sin ^{2}(x)}=1-\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!(2 n-1)} k^{2 n} \sin ^{2 n}(x) \\
\frac{1}{\sqrt{1-k^{2} \sin ^{2}(x)}}=1+\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} k^{2 n} \sin ^{2 n}(x)
\end{gathered}
$$

with $n!!=n(n-2)!!$.

The Gamma function

The gamma function $\Gamma(y)$ is defined by:

$$
\Gamma(y)=\int_{0}^{\infty} \mathrm{e}^{-x} x^{y-1} d x
$$

One can derive that $\Gamma(y+1)=y \Gamma(y)=y$!. This is a way to define faculties for non-integers. Further one can derive that

$$
\Gamma\left(n+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{n}}(2 n-1)!!\text { and } \Gamma^{(n)}(y)=\int_{0}^{\infty} \mathrm{e}^{-x} x^{y-1} \ln ^{n}(x) d x
$$

The Beta function

The betafunction $\beta(p, q)$ is defined by:

$$
\beta(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x
$$

with p and $q>0$. The beta and gamma functions are related by the following equation:

$$
\beta(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
$$

The Delta function

The delta function $\delta(x)$ is an infinitely thin peak function with surface 1 . It can be defined by:

$$
\delta(x)=\lim _{\varepsilon \rightarrow 0} P(\varepsilon, x) \text { with } P(\varepsilon, x)=\left\{\begin{array}{l}
0 \quad \text { for }|x|>\varepsilon \\
\frac{1}{2 \varepsilon} \quad \text { when }|x|<\varepsilon
\end{array}\right.
$$

Some properties are:

$$
\int_{-\infty}^{\infty} \delta(x) d x=1, \quad \int_{-\infty}^{\infty} F(x) \delta(x) d x=F(0)
$$

3.1.5 Goniometric integrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines $\tan \left(\frac{1}{2} x\right):=t$:

$$
d x=\frac{2 d t}{1+t^{2}}, \quad \cos (x)=\frac{1-t^{2}}{1+t^{2}}, \quad \sin (x)=\frac{2 t}{1+t^{2}}
$$

Each integral of the type $\int R\left(x, \sqrt{a x^{2}+b x+c}\right) d x$ can be converted into one of the types that were treated in section 3.1.3. After this conversion one can substitute in the integrals of the type:

$$
\begin{array}{lll}
\int R\left(x, \sqrt{x^{2}+1}\right) d x \quad: & x=\tan (\varphi), d x=\frac{d \varphi}{\cos (\varphi)} \text { of } \sqrt{x^{2}+1}=t+x \\
\int R\left(x, \sqrt{1-x^{2}}\right) d x \quad: & x=\sin (\varphi), d x=\cos (\varphi) d \varphi \text { of } \sqrt{1-x^{2}}=1-t x \\
\int R\left(x, \sqrt{x^{2}-1}\right) d x \quad: & x=\frac{1}{\cos (\varphi)}, d x=\frac{\sin (\varphi)}{\cos ^{2}(\varphi)} d \varphi \text { of } \sqrt{x^{2}-1}=x-t
\end{array}
$$

These definite integrals are easily solved:

$$
\int_{0}^{\pi / 2} \cos ^{n}(x) \sin ^{m}(x) d x=\frac{(n-1)!!(m-1)!!}{(m+n)!!} \cdot \begin{cases}\pi / 2 & \text { when } m \text { and } n \text { are both even } \\ 1 & \text { in all other cases }\end{cases}
$$

Some important integrals are:

$$
\int_{0}^{\infty} \frac{x d x}{\mathrm{e}^{a x}+1}=\frac{\pi^{2}}{12 a^{2}}, \quad \int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(\mathrm{e}^{x}+1\right)^{2}}=\frac{\pi^{2}}{3} \quad, \quad \int_{0}^{\infty} \frac{x^{3} d x}{\mathrm{e}^{x}+1}=\frac{\pi^{4}}{15}
$$

3.2 Functions with more variables

3.2.1 Derivatives

The partial derivative with respect to x of a function $f(x, y)$ is defined by:

$$
\left(\frac{\partial f}{\partial x}\right)_{x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

The directional derivative in the direction of α is defined by:

$$
\frac{\partial f}{\partial \alpha}=\lim _{r \downarrow 0} \frac{f\left(x_{0}+r \cos (\alpha), y_{0}+r \sin (\alpha)\right)-f\left(x_{0}, y_{0}\right)}{r}=(\vec{\nabla} f,(\sin \alpha, \cos \alpha))=\frac{\nabla f \cdot \vec{v}}{|\vec{v}|}
$$

When one changes to coordinates $f(x(u, v), y(u, v))$ holds:

$$
\frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}
$$

If $x(t)$ and $y(t)$ depend only on one parameter t holds:

$$
\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

The total differential df of a function of 3 variables is given by:

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z
$$

So

$$
\frac{d f}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial z} \frac{d z}{d x}
$$

The tangent in point \vec{x}_{0} at the surface $f(x, y)=0$ is given by the equation $f_{x}\left(\vec{x}_{0}\right)\left(x-x_{0}\right)+f_{y}\left(\vec{x}_{0}\right)\left(y-y_{0}\right)=0$.
The tangent plane in \vec{x}_{0} is given by: $f_{x}\left(\vec{x}_{0}\right)\left(x-x_{0}\right)+f_{y}\left(\vec{x}_{0}\right)\left(y-y_{0}\right)=z-f\left(\vec{x}_{0}\right)$.

3.2.2 Taylor series

A function of two variables can be expanded as follows in a Taylor series:

$$
f\left(x_{0}+h, y_{0}+k\right)=\sum_{p=0}^{n} \frac{1}{p!}\left(h \frac{\partial^{p}}{\partial x^{p}}+k \frac{\partial^{p}}{\partial y^{p}}\right) f\left(x_{0}, y_{0}\right)+R(n)
$$

with $R(n)$ the residual error and

$$
\left(h \frac{\partial^{p}}{\partial x^{p}}+k \frac{\partial^{p}}{\partial y^{p}}\right) f(a, b)=\sum_{m=0}^{p}\binom{p}{m} h^{m} k^{p-m} \frac{\partial^{p} f(a, b)}{\partial x^{m} \partial y^{p-m}}
$$

3.2.3 Extrema

When f is continuous on a compact boundary V there exists a global maximum and a global minumum for f on this boundary. A boundary is called compact if it is limited and closed.
Possible extrema of $f(x, y)$ on a boundary $V \in R^{2}$ are:

1. Points on V where $f(x, y)$ is not differentiable,
2. Points where $\vec{\nabla} f=\overrightarrow{0}$,
3. If the boundary V is given by $\varphi(x, y)=0$, than all points where $\vec{\nabla} f(x, y)+\lambda \vec{\nabla} \varphi(x, y)=0$ are possible for extrema. This is the multiplicator method of Lagrange, λ is called a multiplicator.

The same as in R^{2} holds in \mathbb{R}^{3} when the area to be searched is constrained by a compact V, and V is defined by $\varphi_{1}(x, y, z)=0$ and $\varphi_{2}(x, y, z)=0$ for extrema of $f(x, y, z)$ for points (1) and (2). Point (3) is rewritten as follows: possible extrema are points where $\vec{\nabla} f(x, y, z)+\lambda_{1} \vec{\nabla} \varphi_{1}(x, y, z)+\lambda_{2} \vec{\nabla} \varphi_{2}(x, y, z)=0$.

3.2.4 The ∇-operator

In cartesian coordinates (x, y, z) holds:

$$
\begin{aligned}
\vec{\nabla} & =\frac{\partial}{\partial x} \vec{e}_{x}+\frac{\partial}{\partial y} \vec{e}_{y}+\frac{\partial}{\partial z} \vec{e}_{z} \\
\operatorname{grad} f & =\frac{\partial f}{\partial x} \vec{e}_{x}+\frac{\partial f}{\partial y} \vec{e}_{y}+\frac{\partial f}{\partial z} \vec{e}_{z} \\
\operatorname{div} \vec{a} & =\frac{\partial a_{x}}{\partial x}+\frac{\partial a_{y}}{\partial y}+\frac{\partial a_{z}}{\partial z}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{curl} \vec{a} & =\left(\frac{\partial a_{z}}{\partial y}-\frac{\partial a_{y}}{\partial z}\right) \vec{e}_{x}+\left(\frac{\partial a_{x}}{\partial z}-\frac{\partial a_{z}}{\partial x}\right) \vec{e}_{y}+\left(\frac{\partial a_{y}}{\partial x}-\frac{\partial a_{x}}{\partial y}\right) \vec{e}_{z} \\
\nabla^{2} f & =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

In cylindrical coordinates (r, φ, z) holds:

$$
\begin{aligned}
\vec{\nabla} & =\frac{\partial}{\partial r} \vec{e}_{r}+\frac{1}{r} \frac{\partial}{\partial \varphi} \vec{e}_{\varphi}+\frac{\partial}{\partial z} \vec{e}_{z} \\
\operatorname{grad} f & =\frac{\partial f}{\partial r} \vec{e}_{r}+\frac{1}{r} \frac{\partial f}{\partial \varphi} \vec{e}_{\varphi}+\frac{\partial f}{\partial z} \vec{e}_{z} \\
\operatorname{div} \vec{a} & =\frac{\partial a_{r}}{\partial r}+\frac{a_{r}}{r}+\frac{1}{r} \frac{\partial a_{\varphi}}{\partial \varphi}+\frac{\partial a_{z}}{\partial z} \\
\operatorname{curl} \vec{a} & =\left(\frac{1}{r} \frac{\partial a_{z}}{\partial \varphi}-\frac{\partial a_{\varphi}}{\partial z}\right) \vec{e}_{r}+\left(\frac{\partial a_{r}}{\partial z}-\frac{\partial a_{z}}{\partial r}\right) \vec{e}_{\varphi}+\left(\frac{\partial a_{\varphi}}{\partial r}+\frac{a_{\varphi}}{r}-\frac{1}{r} \frac{\partial a_{r}}{\partial \varphi}\right) \vec{e}_{z} \\
\nabla^{2} f & =\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

In spherical coordinates (r, θ, φ) holds:

$$
\begin{aligned}
\vec{\nabla}= & \frac{\partial}{\partial r} \vec{e}_{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \vec{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \vec{e}_{\varphi} \\
\operatorname{grad} f= & \frac{\partial f}{\partial r} \vec{e}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \vec{e}_{\varphi} \\
\operatorname{div} \vec{a}= & \frac{\partial a_{r}}{\partial r}+\frac{2 a_{r}}{r}+\frac{1}{r} \frac{\partial a_{\theta}}{\partial \theta}+\frac{a_{\theta}}{r \tan \theta}+\frac{1}{r \sin \theta} \frac{\partial a_{\varphi}}{\partial \varphi} \\
\operatorname{curl} \vec{a}= & \left(\frac{1}{r} \frac{\partial a_{\varphi}}{\partial \theta}+\frac{a_{\theta}}{r \tan \theta}-\frac{1}{r \sin \theta} \frac{\partial a_{\theta}}{\partial \varphi}\right) \vec{e}_{r}+\left(\frac{1}{r \sin \theta} \frac{\partial a_{r}}{\partial \varphi}-\frac{\partial a_{\varphi}}{\partial r}-\frac{a_{\varphi}}{r}\right) \vec{e}_{\theta}+ \\
& \left(\frac{\partial a_{\theta}}{\partial r}+\frac{a_{\theta}}{r}-\frac{1}{r} \frac{\partial a_{r}}{\partial \theta}\right) \vec{e}_{\varphi} \\
\nabla^{2} f= & \frac{\partial^{2} f}{\partial r^{2}}+\frac{2}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{1}{r^{2} \tan \theta} \frac{\partial f}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}
\end{aligned}
$$

General orthonormal curvilinear coordinates (u, v, w) can be derived from cartesian coordinates by the transformation $\vec{x}=\vec{x}(u, v, w)$. The unit vectors are given by:

$$
\vec{e}_{u}=\frac{1}{h_{1}} \frac{\partial \vec{x}}{\partial u}, \quad \vec{e}_{v}=\frac{1}{h_{2}} \frac{\partial \vec{x}}{\partial v}, \quad \vec{e}_{w}=\frac{1}{h_{3}} \frac{\partial \vec{x}}{\partial w}
$$

where the terms h_{i} give normalization to length 1 . The differential operators are than given by:

$$
\begin{aligned}
\operatorname{grad} f & =\frac{1}{h_{1}} \frac{\partial f}{\partial u} \vec{e}_{u}+\frac{1}{h_{2}} \frac{\partial f}{\partial v} \vec{e}_{v}+\frac{1}{h_{3}} \frac{\partial f}{\partial w} \vec{e}_{w} \\
\operatorname{div} \vec{a} & =\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial}{\partial u}\left(h_{2} h_{3} a_{u}\right)+\frac{\partial}{\partial v}\left(h_{3} h_{1} a_{v}\right)+\frac{\partial}{\partial w}\left(h_{1} h_{2} a_{w}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{curl} \vec{a}= & \frac{1}{h_{2} h_{3}}\left(\frac{\partial\left(h_{3} a_{w}\right)}{\partial v}-\frac{\partial\left(h_{2} a_{v}\right)}{\partial w}\right) \vec{e}_{u}+\frac{1}{h_{3} h_{1}}\left(\frac{\partial\left(h_{1} a_{u}\right)}{\partial w}-\frac{\partial\left(h_{3} a_{w}\right)}{\partial u}\right) \vec{e}_{v}+ \\
& \frac{1}{h_{1} h_{2}}\left(\frac{\partial\left(h_{2} a_{v}\right)}{\partial u}-\frac{\partial\left(h_{1} a_{u}\right)}{\partial v}\right) \vec{e}_{w} \\
\nabla^{2} f= & \frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial f}{\partial v}\right)+\frac{\partial}{\partial w}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial w}\right)\right]
\end{aligned}
$$

Some properties of the ∇-operator are:

$$
\begin{array}{lll}
\operatorname{div}(\phi \vec{v})=\phi \operatorname{div} \vec{v}+\operatorname{grad} \phi \cdot \vec{v} & \operatorname{curl}(\phi \vec{v})=\phi \operatorname{curl} \vec{v}+(\operatorname{grad} \phi) \times \vec{v} & \operatorname{curl} \operatorname{grad} \phi=\overrightarrow{0} \\
\operatorname{div}(\vec{u} \times \vec{v})=\vec{v} \cdot(\operatorname{curl} \vec{u})-\vec{u} \cdot(\operatorname{curl} \vec{v}) & \operatorname{curl} \operatorname{curl} \vec{v}=\operatorname{grad} \operatorname{div} \vec{v}-\nabla^{2} \vec{v} & \operatorname{div} \operatorname{curl} \vec{v}=0 \\
\operatorname{div} \operatorname{grad} \phi=\nabla^{2} \phi & \nabla^{2} \vec{v} \equiv\left(\nabla^{2} v_{1}, \nabla^{2} v_{2}, \nabla^{2} v_{3}\right) &
\end{array}
$$

Here, \vec{v} is an arbitrary vectorfield and ϕ an arbitrary scalar field.

3.2.5 Integral theorems

Some important integral theorems are:

$$
\begin{array}{ll}
\text { Gauss: } & \oiint(\vec{v} \cdot \vec{n}) d^{2} A=\iiint(\operatorname{div} \vec{v}) d^{3} V \\
\text { Stokes for a scalar field: } & \oint\left(\phi \cdot \vec{e}_{\mathrm{t}}\right) d s=\iint(\vec{n} \times \operatorname{grad} \phi) d^{2} A \\
\text { Stokes for a vector field: } & \oint\left(\vec{v} \cdot \vec{e}_{\mathrm{t}}\right) d s=\iint(\operatorname{curl} \vec{v} \cdot \vec{n}) d^{2} A \\
\text { this gives: } & \oiint(\operatorname{curl} \vec{v} \cdot \vec{n}) d^{2} A=0 \\
\text { Ostrogradsky: } & \oiint(\vec{n} \times \vec{v}) d^{2} A=\iiint(\operatorname{curl} \vec{v}) d^{3} A \\
& \oiint(\phi \vec{n}) d^{2} A=\iiint(\operatorname{grad} \phi) d^{3} V
\end{array}
$$

Here the orientable surface $\iint d^{2} A$ is bounded by the Jordan curve $s(t)$.

3.2.6 Multiple integrals

Let A be a closed curve given by $f(x, y)=0$, than the surface A inside the curve in \mathbb{R}^{2} is given by

$$
A=\iint d^{2} A=\iint d x d y
$$

Let the surface A be defined by the function $z=f(x, y)$. The volume V bounded by A and the $x y$ plane is than given by:

$$
V=\iint f(x, y) d x d y
$$

The volume inside a closed surface defined by $z=f(x, y)$ is given by:

$$
V=\iiint d^{3} V=\iint f(x, y) d x d y=\iiint d x d y d z
$$

3.2.7 Coordinate transformations

The expressions $d^{2} A$ and $d^{3} V$ transform as follows when one changes coordinates to $\vec{u}=(u, v, w)$ through the transformation $x(u, v, w)$:

$$
V=\iiint f(x, y, z) d x d y d z=\iiint f(\vec{x}(\vec{u}))\left|\frac{\partial \vec{x}}{\partial \vec{u}}\right| d u d v d w
$$

In \mathbb{R}^{2} holds:

$$
\frac{\partial \vec{x}}{\partial \vec{u}}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|
$$

Let the surface A be defined by $z=F(x, y)=X(u, v)$. Than the volume bounded by the $x y$ plane and F is given by:

$$
\iint_{S} f(\vec{x}) d^{2} A=\iint_{G} f(\vec{x}(\vec{u}))\left|\frac{\partial X}{\partial u} \times \frac{\partial X}{\partial v}\right| d u d v=\iint_{G} f(x, y, F(x, y)) \sqrt{1+\partial_{x} F^{2}+\partial_{y} F^{2}} d x d y
$$

3.3 Orthogonality of functions

The inner product of two functions $f(x)$ and $g(x)$ on the interval $[a, b]$ is given by:

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

or, when using a weight function $p(x)$, by:

$$
(f, g)=\int_{a}^{b} p(x) f(x) g(x) d x
$$

The norm $\|f\|$ follows from: $\|f\|^{2}=(f, f)$. A set functions f_{i} is orthonormal if $\left(f_{i}, f_{j}\right)=\delta_{i j}$.
Each function $f(x)$ can be written as a sum of orthogonal functions:

$$
f(x)=\sum_{i=0}^{\infty} c_{i} g_{i}(x)
$$

and $\sum c_{i}^{2} \leq\|f\|^{2}$. Let the set g_{i} be orthogonal, than it follows:

$$
c_{i}=\frac{f, g_{i}}{\left(g_{i}, g_{i}\right)}
$$

3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal basis $(\cos (n x), \sin (n x))$ we have a Fourier series.
A periodical function $f(x)$ with period $2 L$ can be written as:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

Due to the orthogonality follows for the coefficients:

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(t) d t \quad, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \quad, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t
$$

A Fourier series can also be written as a sum of complex exponents:

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} \mathrm{e}^{i n x}
$$

with

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-i n x} d x
$$

The Fourier transform of a function $f(x)$ gives the transformed function $\hat{f}(\omega)$:

$$
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-i \omega x} d x
$$

The inverse transformation is given by:

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) \mathrm{e}^{i \omega x} d \omega
$$

where $f\left(x^{+}\right)$and $f\left(x^{-}\right)$are defined by the lower - and upper limit:

$$
f\left(a^{-}\right)=\lim _{x \uparrow a} f(x), \quad f\left(a^{+}\right)=\lim _{x \downarrow a} f(x)
$$

For continuous functions is $\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]=f(x)$.

Chapter 4

Differential equations

4.1 Linear differential equations

4.1.1 First order linear DE

The general solution of a linear differential equation is given by $y_{\mathrm{A}}=y_{\mathrm{H}}+y_{\mathrm{P}}$, where y_{H} is the solution of the homogeneous equation and y_{P} is a particular solution.

A first order differential equation is given by: $y^{\prime}(x)+a(x) y(x)=b(x)$. Its homogeneous equation is $y^{\prime}(x)+a(x) y(x)=0$.

The solution of the homogeneous equation is given by

$$
y_{\mathrm{H}}=k \exp \left(\int a(x) d x\right)
$$

Suppose that $a(x)=a=$ constant.
Substitution of $\exp (\lambda x)$ in the homogeneous equation leads to the characteristic equation $\lambda+a=0$
$\Rightarrow \lambda=-a$.
Suppose $b(x)=\alpha \exp (\mu x)$. Than one can distinguish two cases:

1. $\lambda \neq \mu:$ a particular solution is: $y_{\mathrm{P}}=\exp (\mu x)$
2. $\lambda=\mu$: a particular solution is: $y_{\mathrm{P}}=x \exp (\mu x)$

When a DE is solved by variation of parameters one writes: $y_{\mathrm{P}}(x)=y_{\mathrm{H}}(x) f(x)$, and than one solves $f(x)$ from this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is given by: $y^{\prime \prime}(x)+a y^{\prime}(x)+b y(x)=$ $c(x)$. If $c(x)=c=$ constant there exists a particular solution $y_{\mathrm{P}}=c / b$.

Substitution of $y=\exp (\lambda x)$ leads to the characteristic equation $\lambda^{2}+a \lambda+b=0$.
There are now 2 possibilities:

1. $\lambda_{1} \neq \lambda_{2}$: than $y_{\mathrm{H}}=\alpha \exp \left(\lambda_{1} x\right)+\beta \exp \left(\lambda_{2} x\right)$.
2. $\lambda_{1}=\lambda_{2}=\lambda$: than $y_{\mathrm{H}}=(\alpha+\beta x) \exp (\lambda x)$.

If $c(x)=p(x) \exp (\mu x)$ where $p(x)$ is a polynomial there are 3 possibilities:

1. $\lambda_{1}, \lambda_{2} \neq \mu: y_{\mathrm{P}}=q(x) \exp (\mu x)$.
2. $\lambda_{1}=\mu, \lambda_{2} \neq \mu: y_{\mathrm{P}}=x q(x) \exp (\mu x)$.
3. $\lambda_{1}=\lambda_{2}=\mu: y_{\mathrm{P}}=x^{2} q(x) \exp (\mu x)$.
where $q(x)$ is a polynomial of the same order as $p(x)$.
When: $y^{\prime \prime}(x)+\omega^{2} y(x)=\omega f(x)$ and $y(0)=y^{\prime}(0)=0$ follows: $y(x)=\int_{0}^{x} f(x) \sin (\omega(x-t)) d t$.

4.1.3 The Wronskian

We start with the LDE $y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=0$ and the two initial conditions $y\left(x_{0}\right)=K_{0}$ and $y^{\prime}\left(x_{0}\right)=K_{1}$. When $p(x)$ and $q(x)$ are continuous on the open interval I there exists a unique solution $y(x)$ on this interval.
The general solution can than be written as $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ and y_{1} and y_{2} are linear independent. These are also all solutions of the LDE.

The Wronskian is defined by:

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

y_{1} and y_{2} are linear independent if and only if on the interval I when $\exists x_{0} \in I$ so that holds:
$W\left(y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right)=0$.

4.1.4 Power series substitution

When a series $y=\sum a_{n} x^{n}$ is substituted in the LDE with constant coefficients $y^{\prime \prime}(x)+p y^{\prime}(x)+q y(x)=0$ this leads to:

$$
\sum_{n}\left[n(n-1) a_{n} x^{n-2}+p n a_{n} x^{n-1}+q a_{n} x^{n}\right]=0
$$

Setting coefficients for equal powers of x equal gives:

$$
(n+2)(n+1) a_{n+2}+p(n+1) a_{n+1}+q a_{n}=0
$$

This gives a general relation between the coefficients. Special cases are $n=0,1,2$.

4.2 Some special cases

4.2.1 Frobenius' method

Given the LDE

$$
\frac{d^{2} y(x)}{d x^{2}}+\frac{b(x)}{x} \frac{d y(x)}{d x}+\frac{c(x)}{x^{2}} y(x)=0
$$

with $b(x)$ and $c(x)$ analytical at $x=0$. This LDE has at least one solution of the form

$$
y_{i}(x)=x^{r_{i}} \sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { with } \quad i=1,2
$$

with r real or complex and chosen so that $a_{0} \neq 0$. When one expands $b(x)$ and $c(x)$ as $b(x)=b_{0}+b_{1} x+$ $b_{2} x^{2}+\ldots$ and $c(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots$, it follows for r :

$$
r^{2}+\left(b_{0}-1\right) r+c_{0}=0
$$

There are now 3 possibilities:

1. $r_{1}=r_{2}$: than $y(x)=y_{1}(x) \ln |x|+y_{2}(x)$.
2. $r_{1}-r_{2} \in I N:$ than $y(x)=k y_{1}(x) \ln |x|+y_{2}(x)$.
3. $r_{1}-r_{2} \neq \mathbb{Z}$: than $y(x)=y_{1}(x)+y_{2}(x)$.

4.2.2 Euler

Given the LDE

$$
x^{2} \frac{d^{2} y(x)}{d x^{2}}+a x \frac{d y(x)}{d x}+b y(x)=0
$$

Substitution of $y(x)=x^{r}$ gives an equation for r : $r^{2}+(a-1) r+b=0$. From this one gets two solutions r_{1} and r_{2}. There are now 2 possibilities:

1. $r_{1} \neq r_{2}$: than $y(x)=C_{1} x^{r 1}+C_{2} x^{r_{2}}$.
2. $r_{1}=r_{2}=r$: than $y(x)=\left(C_{1} \ln (x)+C_{2}\right) x^{r}$.

4.2.3 Legendre's DE

Given the LDE

$$
\left(1-x^{2}\right) \frac{d^{2} y(x)}{d x^{2}}-2 x \frac{d y(x)}{d x}+n(n-1) y(x)=0
$$

The solutions of this equation are given by $y(x)=a P_{n}(x)+b y_{2}(x)$ where the Legendre polynomials $P(x)$ are defined by:

$$
P_{n}(x)=\frac{d^{n}}{d x^{n}}\left(\frac{\left(1-x^{2}\right)^{n}}{2^{n} n!}\right)
$$

For these holds: $\left\|P_{n}\right\|^{2}=2 /(2 n+1)$.

4.2.4 The associated Legendre equation

This equation follows from the θ-dependent part of the wave equation $\nabla^{2} \Psi=0$ by substitution of $\xi=\cos (\theta)$. Than follows:

$$
\left(1-\xi^{2}\right) \frac{d}{d \xi}\left(\left(1-\xi^{2}\right) \frac{d P(\xi)}{d \xi}\right)+\left[C\left(1-\xi^{2}\right)-m^{2}\right] P(\xi)=0
$$

Regular solutions exists only if $C=l(l+1)$. They are of the form:

$$
P_{l}^{|m|}(\xi)=\left(1-\xi^{2}\right)^{m / 2} \frac{d^{|m|} P^{0}(\xi)}{d \xi^{|m|}}=\frac{\left(1-\xi^{2}\right)^{|m| / 2}}{2^{l} l!} \frac{d^{|m|+l}}{d \xi^{|m|+l}}\left(\xi^{2}-1\right)^{l}
$$

For $|m|>l$ is $P_{l}^{|m|}(\xi)=0$. Some properties of $P_{l}^{0}(\xi)$ zijn:

$$
\int_{-1}^{1} P_{l}^{0}(\xi) P_{l^{\prime}}^{0}(\xi) d \xi=\frac{2}{2 l+1} \delta_{l l^{\prime}} \quad, \quad \sum_{l=0}^{\infty} P_{l}^{0}(\xi) t^{l}=\frac{1}{\sqrt{1-2 \xi t+t^{2}}}
$$

This polynomial can be written as:

$$
P_{l}^{0}(\xi)=\frac{1}{\pi} \int_{0}^{\pi}\left(\xi+\sqrt{\xi^{2}-1} \cos (\theta)\right)^{l} d \theta
$$

4.2.5 Solutions for Bessel's equation

Given the LDE

$$
x^{2} \frac{d^{2} y(x)}{d x^{2}}+x \frac{d y(x)}{d x}+\left(x^{2}-\nu^{2}\right) y(x)=0
$$

also called Bessel's equation, and the Bessel functions of the first kind

$$
J_{\nu}(x)=x^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m+\nu} m!\Gamma(\nu+m+1)}
$$

for $\nu:=n \in I N$ this becomes:

$$
J_{n}(x)=x^{n} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m+n} m!(n+m)!}
$$

When $\nu \neq \mathbb{Z}$ the solution is given by $y(x)=a J_{\nu}(x)+b J_{-\nu}(x)$. But because for $n \in \mathbb{Z}$ holds:
$J_{-n}(x)=(-1)^{n} J_{n}(x)$, this does not apply to integers. The general solution of Bessel's equation is given by $y(x)=a J_{\nu}(x)+b Y_{\nu}(x)$, where Y_{ν} are the Bessel functions of the second kind:

$$
Y_{\nu}(x)=\frac{J_{\nu}(x) \cos (\nu \pi)-J_{-\nu}(x)}{\sin (\nu \pi)} \quad \text { and } \quad Y_{n}(x)=\lim _{\nu \rightarrow n} Y_{\nu}(x)
$$

The equation $x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)-\left(x^{2}+\nu^{2}\right) y(x)=0$ has the modified Bessel functions of the first kind $I_{\nu}(x)=i^{-\nu} J_{\nu}(i x)$ as solution, and also solutions $K_{\nu}=\pi\left[I_{-\nu}(x)-I_{\nu}(x)\right] /[2 \sin (\nu \pi)]$.

Sometimes it can be convenient to write the solutions of Bessel's equation in terms of the Hankel functions

$$
H_{n}^{(1)}(x)=J_{n}(x)+i Y_{n}(x) \quad, \quad H_{n}^{(2)}(x)=J_{n}(x)-i Y_{n}(x)
$$

4.2.6 Properties of Bessel functions

Bessel functions are orthogonal with respect to the weight function $p(x)=x$.
$J_{-n}(x)=(-1)^{n} J_{n}(x)$. The Neumann functions $N_{m}(x)$ are definied as:

$$
N_{m}(x)=\frac{1}{2 \pi} J_{m}(x) \ln (x)+\frac{1}{x^{m}} \sum_{n=0}^{\infty} \alpha_{n} x^{2 n}
$$

The following holds: $\lim _{x \rightarrow 0} J_{m}(x)=x^{m}, \lim _{x \rightarrow 0} N_{m}(x)=x^{-m}$ for $m \neq 0, \lim _{x \rightarrow 0} N_{0}(x)=\ln (x)$.

$$
\lim _{r \rightarrow \infty} H(r)=\frac{\mathrm{e}^{ \pm i k r} \mathrm{e}^{i \omega t}}{\sqrt{r}}, \quad \lim _{x \rightarrow \infty} J_{n}(x)=\sqrt{\frac{2}{\pi x}} \cos \left(x-x_{n}\right), \quad \lim _{x \rightarrow \infty} J_{-n}(x)=\sqrt{\frac{2}{\pi x}} \sin \left(x-x_{n}\right)
$$

with $x_{n}=\frac{1}{2} \pi\left(n+\frac{1}{2}\right)$.

$$
J_{n+1}(x)+J_{n-1}(x)=\frac{2 n}{x} J_{n}(x), \quad J_{n+1}(x)-J_{n-1}(x)=-2 \frac{d J_{n}(x)}{d x}
$$

The following integral relations hold:

$$
J_{m}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp [i(x \sin (\theta)-m \theta)] d \theta=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (\theta)-m \theta) d \theta
$$

4.2.7 Laguerre's equation

Given the LDE

$$
x \frac{d^{2} y(x)}{d x^{2}}+(1-x) \frac{d y(x)}{d x}+n y(x)=0
$$

Solutions of this equation are the Laguerre polynomials $L_{n}(x)$:

$$
L_{n}(x)=\frac{\mathrm{e}^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} \mathrm{e}^{-x}\right)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!}\binom{n}{m} x^{m}
$$

4.2.8 The associated Laguerre equation

Given the LDE

$$
\frac{d^{2} y(x)}{d x^{2}}+\left(\frac{m+1}{x}-1\right) \frac{d y(x)}{d x}+\left(\frac{n+\frac{1}{2}(m+1)}{x}\right) y(x)=0
$$

Solutions of this equation are the associated Laguerre polynomials $L_{n}^{m}(x)$:

$$
L_{n}^{m}(x)=\frac{(-1)^{m} n!}{(n-m)!} \mathrm{e}^{-x} x^{-m} \frac{d^{n-m}}{d x^{n-m}}\left(\mathrm{e}^{-x} x^{n}\right)
$$

4.2.9 Hermite

The differential equations of Hermite are:

$$
\frac{d^{2} \mathrm{H}_{n}(x)}{d x^{2}}-2 x \frac{d \mathrm{H}_{n}(x)}{d x}+2 n \mathrm{H}_{n}(x)=0 \text { and } \frac{d^{2} \mathrm{He}_{n}(x)}{d x^{2}}-x \frac{d \mathrm{He}_{n}(x)}{d x}+n \mathrm{He}_{n}(x)=0
$$

Solutions of these equations are the Hermite polynomials, given by:

$$
\begin{aligned}
& \mathrm{H}_{n}(x)=(-1)^{n} \exp \left(\frac{1}{2} x^{2}\right) \frac{d^{n}\left(\exp \left(-\frac{1}{2} x^{2}\right)\right)}{d x^{n}}=2^{n / 2} \operatorname{He}_{n}(x \sqrt{2}) \\
& \mathrm{He}_{n}(x)=(-1)^{n}\left(\exp \left(x^{2}\right) \frac{d^{n}\left(\exp \left(-x^{2}\right)\right)}{d x^{n}}=2^{-n / 2} \mathrm{H}_{n}(x / \sqrt{2})\right.
\end{aligned}
$$

4.2.10 Chebyshev

The LDE

$$
\left(1-x^{2}\right) \frac{d^{2} U_{n}(x)}{d x^{2}}-3 x \frac{d U_{n}(x)}{d x}+n(n+2) U_{n}(x)=0
$$

has solutions of the form

$$
U_{n}(x)=\frac{\sin [(n+1) \arccos (x)]}{\sqrt{1-x^{2}}}
$$

The LDE

$$
\left(1-x^{2}\right) \frac{d^{2} T_{n}(x)}{d x^{2}}-x \frac{d T_{n}(x)}{d x}+n^{2} T_{n}(x)=0
$$

has solutions $T_{n}(x)=\cos (n \arccos (x))$.

4.2.11 Weber

The LDE $W_{n}^{\prime \prime}(x)+\left(n+\frac{1}{2}-\frac{1}{4} x^{2}\right) W_{n}(x)=0$ has solutions: $W_{n}(x)=\operatorname{He}_{n}(x) \exp \left(-\frac{1}{4} x^{2}\right)$.

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

$$
\begin{array}{ll}
y^{\prime}=a \sqrt{y^{2}+b^{2}} & y=b \sinh \left(a\left(x-x_{0}\right)\right) \\
y^{\prime}=a \sqrt{y^{2}-b^{2}} & y=b \cosh \left(a\left(x-x_{0}\right)\right) \\
y^{\prime}=a \sqrt{b^{2}-y^{2}} & y=b \cos \left(a\left(x-x_{0}\right)\right) \\
y^{\prime}=a\left(y^{2}+b^{2}\right) & y=b \tan \left(a\left(x-x_{0}\right)\right) \\
y^{\prime}=a\left(y^{2}-b^{2}\right) & y=b \operatorname{coth}\left(a\left(x-x_{0}\right)\right) \\
y^{\prime}=a\left(b^{2}-y^{2}\right) & y=b \tanh \left(a\left(x-x_{0}\right)\right) \\
y^{\prime}=a y\left(\frac{b-y}{b}\right) & y=\frac{b}{1+C b \exp (-a x)}
\end{array}
$$

4.4 Sturm-Liouville equations

Sturm-Liouville equations are second order LDE's of the form:

$$
-\frac{d}{d x}\left(p(x) \frac{d y(x)}{d x}\right)+q(x) y(x)=\lambda m(x) y(x)
$$

The boundary conditions are chosen so that the operator

$$
L=-\frac{d}{d x}\left(p(x) \frac{d}{d x}\right)+q(x)
$$

is Hermitean. The normalization function $m(x)$ must satisfy

$$
\int_{a}^{b} m(x) y_{i}(x) y_{j}(x) d x=\delta_{i j}
$$

When $y_{1}(x)$ and $y_{2}(x)$ are two linear independent solutions one can write the Wronskian in this form:

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\frac{C}{p(x)}
$$

where C is constant. By changing to another dependent variable $u(x)$, given by: $u(x)=y(x) \sqrt{p(x)}$, the LDE transforms into the normal form:

$$
\frac{d^{2} u(x)}{d x^{2}}+I(x) u(x)=0 \quad \text { with } \quad I(x)=\frac{1}{4}\left(\frac{p^{\prime}(x)}{p(x)}\right)^{2}-\frac{1}{2} \frac{p^{\prime \prime}(x)}{p(x)}-\frac{q(x)-\lambda m(x)}{p(x)}
$$

If $I(x)>0$, than $y^{\prime \prime} / y<0$ and the solution has an oscillatory behaviour, if $I(x)<0$, than $y^{\prime \prime} / y>0$ and the solution has an exponential behaviour.

4.5 Linear partial differential equations

4.5.1 General

The normal derivative is defined by:

$$
\frac{\partial u}{\partial n}=(\vec{\nabla} u, \vec{n})
$$

A frequently used solution method for PDE's is separation of variables: one assumes that the solution can be written as $u(x, t)=X(x) T(t)$. When this is substituted two ordinary DE's for $X(x)$ and $T(t)$ are obtained.

4.5.2 Special cases

The wave equation

The wave equation in 1 dimension is given by

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

When the initial conditions $u(x, 0)=\varphi(x)$ and $\partial u(x, 0) / \partial t=\Psi(x)$ apply, the general solution is given by:

$$
u(x, t)=\frac{1}{2}[\varphi(x+c t)+\varphi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \Psi(\xi) d \xi
$$

The diffusion equation

The diffusion equation is:

$$
\frac{\partial u}{\partial t}=D \nabla^{2} u
$$

Its solutions can be written in terms of the propagators $P\left(x, x^{\prime}, t\right)$. These have the property that $P\left(x, x^{\prime}, 0\right)=\delta\left(x-x^{\prime}\right)$. In 1 dimension it reads:

$$
P\left(x, x^{\prime}, t\right)=\frac{1}{2 \sqrt{\pi D t}} \exp \left(\frac{-\left(x-x^{\prime}\right)^{2}}{4 D t}\right)
$$

In 3 dimensions it reads:

$$
P\left(x, x^{\prime}, t\right)=\frac{1}{8(\pi D t)^{3 / 2}} \exp \left(\frac{-\left(\vec{x}-\vec{x}^{\prime}\right)^{2}}{4 D t}\right)
$$

With initial condition $u(x, 0)=f(x)$ the solution is:

$$
u(x, t)=\int_{\mathcal{G}} f\left(x^{\prime}\right) P\left(x, x^{\prime}, t\right) d x^{\prime}
$$

The solution of the equation

$$
\frac{\partial u}{\partial t}-D \frac{\partial^{2} u}{\partial x^{2}}=g(x, t)
$$

is given by

$$
u(x, t)=\int d t^{\prime} \int d x^{\prime} g\left(x^{\prime}, t^{\prime}\right) P\left(x, x^{\prime}, t-t^{\prime}\right)
$$

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution of $u(\vec{x}, t)=v(\vec{x}) \exp (i \omega t)$ in the wave equation. This gives for v :

$$
\nabla^{2} v(\vec{x}, \omega)+k^{2} v(\vec{x}, \omega)=0
$$

This gives as solutions for v :

1. In cartesian coordinates: substitution of $v=A \exp (i \vec{k} \cdot \vec{x})$ gives:

$$
v(\vec{x})=\int \cdots \int A(k) \mathrm{e}^{i \vec{k} \cdot \vec{x}} d k
$$

with the integrals over $\vec{k}^{2}=k^{2}$.
2. In polar coordinates:

$$
v(r, \varphi)=\sum_{m=0}^{\infty}\left(A_{m} J_{m}(k r)+B_{m} N_{m}(k r)\right) \mathrm{e}^{i m \varphi}
$$

3. In spherical coordinates:

$$
v(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left[A_{l m} J_{l+\frac{1}{2}}(k r)+B_{l m} J_{-l-\frac{1}{2}}(k r)\right] \frac{Y(\theta, \varphi)}{\sqrt{r}}
$$

4.5.3 Potential theory and Green's theorem

Subject of the potential theory are the Poisson equation $\nabla^{2} u=-f(\vec{x})$ where f is a given function, and the Laplace equation $\nabla^{2} u=0$. The solutions of these can often be interpreted as a potential. The solutions of Laplace's equation are called harmonic functions.
When a vector field \vec{v} is given by $\vec{v}=\operatorname{grad} \varphi$ holds:

$$
\int_{a}^{b}(\vec{v}, \vec{t}) d s=\varphi(\vec{b})-\varphi(\vec{a})
$$

In this case there exist functions φ and \vec{w} so that $\vec{v}=\operatorname{grad} \varphi+\operatorname{curl} \vec{w}$.
The field lines of the field $\vec{v}(\vec{x})$ follow from:

$$
\dot{\vec{x}}(t)=\lambda \vec{v}(\vec{x})
$$

The first theorem of Green is:

$$
\iiint_{\mathcal{G}}\left[u \nabla^{2} v+(\nabla u, \nabla v)\right] d^{3} V=\oiint_{\mathcal{S}} u \frac{\partial v}{\partial n} d^{2} A
$$

The second theorem of Green is:

$$
\iiint_{\mathcal{G}}\left[u \nabla^{2} v-v \nabla^{2} u\right] d^{3} V=\oiint_{\mathcal{S}}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) d^{2} A
$$

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a normal derivative of 0 on the boundary of an area is constant within that area.
The Dirichlet problem is:

$$
\nabla^{2} u(\vec{x})=-f(\vec{x}), \vec{x} \in R, u(\vec{x})=g(\vec{x}) \text { for all } \vec{x} \in S
$$

It has a unique solution.
The Neumann problem is:

$$
\nabla^{2} u(\vec{x})=-f(\vec{x}), \vec{x} \in R, \frac{\partial u(\vec{x})}{\partial n}=h(\vec{x}) \text { for all } \vec{x} \in S
$$

The solution is unique except for a constant. The solution exists if:

$$
-\iiint_{R} f(\vec{x}) d^{3} V=\oiint_{S} h(\vec{x}) d^{2} A
$$

A fundamental solution of the Laplace equation satisfies:

$$
\nabla^{2} u(\vec{x})=-\delta(\vec{x})
$$

This has in 2 dimensions in polar coordinates the following solution:

$$
u(r)=\frac{\ln (r)}{2 \pi}
$$

This has in 3 dimensions in spherical coordinates the following solution:

$$
u(r)=\frac{1}{4 \pi r}
$$

The equation $\nabla^{2} v=-\delta(\vec{x}-\vec{\xi})$ has the solution

$$
v(\vec{x})=\frac{1}{4 \pi|\vec{x}-\vec{\xi}|}
$$

After substituting this in Green's 2nd theorem and applying the sieve property of the δ function one can derive Green's 3rd theorem:

$$
u(\vec{\xi})=-\frac{1}{4 \pi} \iiint_{R} \frac{\nabla^{2} u}{r} d^{3} V+\frac{1}{4 \pi} \oiint_{S}\left[\frac{1}{r} \frac{\partial u}{\partial n}-u \frac{\partial}{\partial n}\left(\frac{1}{r}\right)\right] d^{2} A
$$

The Green function $G(\vec{x}, \vec{\xi})$ is defined by: $\nabla^{2} G=-\delta(\vec{x}-\vec{\xi})$, and on boundary S holds $G(\vec{x}, \vec{\xi})=0$. Than G can be written as:

$$
G(\vec{x}, \vec{\xi})=\frac{1}{4 \pi|\vec{x}-\vec{\xi}|}+g(\vec{x}, \vec{\xi})
$$

Than $g(\vec{x}, \vec{\xi})$ is a solution of Dirichlet's problem. The solution of Poisson's equation $\nabla^{2} u=-f(\vec{x})$ when on the boundary S holds: $u(\vec{x})=g(\vec{x})$, is:

$$
u(\vec{\xi})=\iiint_{R} G(\vec{x}, \vec{\xi}) f(\vec{x}) d^{3} V-\not \oiint_{S} g(\vec{x}) \frac{\partial G(\vec{x}, \vec{\xi})}{\partial n} d^{2} A
$$

