Mathematics Formulary

By ir. J.C.A. Wevers

Dear reader,

This document contains 66 pages with mathematical equations intended for physicists and engineers. It is intended to be a short reference for anyone who often needs to look up mathematical equations.

This document can also be obtained from the author, Johan Wevers (johanw@vulcan.xs4all.nl).

It can also be found on the WWW on http://www.xs4all.nl/~johanw/index.html.

This document is Copyright by J.C.A. Wevers. All rights reserved. Permission to use, copy and distribute this unmodified document by any means and for any purpose *except profit purposes* is hereby granted. Reproducing this document by any means, included, but not limited to, printing, copying existing prints, publishing by electronic or other means, implies full agreement to the above non-profit-use clause, unless upon explicit prior written permission of the author.

The C code for the rootfinding via Newtons method and the FFT in chapter 8 are from "Numerical Recipes in C", 2nd Edition, ISBN 0-521-43108-5.

The Mathematics Formulary is made with teT_FX and LAT_FX version 2.09.

If you prefer the notation in which vectors are typefaced in boldface, uncomment the redefinition of the **\vec** command and recompile the file.

If you find any errors or have any comments, please let me know. I am always open for suggestions and possible corrections to the mathematics formulary.

Johan Wevers

Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a point p on the unit circle holds:

$$\cos(\phi) = x_p$$
 , $\sin(\phi) = y_p$, $\tan(\phi) = \frac{y_p}{x_p}$

 $\sin^2(x) + \cos^2(x) = 1$ and $\cos^{-2}(x) = 1 + \tan^2(x)$.

$$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) \quad , \quad \sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)}$$

The sum formulas are:

$$\begin{aligned} \sin(p) + \sin(q) &= 2\sin(\frac{1}{2}(p+q))\cos(\frac{1}{2}(p-q)) \\ \sin(p) - \sin(q) &= 2\cos(\frac{1}{2}(p+q))\sin(\frac{1}{2}(p-q)) \\ \cos(p) + \cos(q) &= 2\cos(\frac{1}{2}(p+q))\cos(\frac{1}{2}(p-q)) \\ \cos(p) - \cos(q) &= -2\sin(\frac{1}{2}(p+q))\sin(\frac{1}{2}(p-q)) \end{aligned}$$

From these equations can be derived that

$$2\cos^{2}(x) = 1 + \cos(2x) , \qquad 2\sin^{2}(x) = 1 - \cos(2x)$$

$$\sin(\pi - x) = \sin(x) , \qquad \cos(\pi - x) = -\cos(x)$$

$$\sin(\frac{1}{2}\pi - x) = \cos(x) , \qquad \cos(\frac{1}{2}\pi - x) = \sin(x)$$

Conclusions from equalities:

$$\underbrace{\frac{\sin(x) = \sin(a)}{\cos(x) = \cos(a)}}_{x = a \pm 2k\pi \text{ or } x = a \pm 2k\pi \text{ or } x = (\pi - a) \pm 2k\pi, \quad k \in \mathbb{N}$$

$$\underbrace{\frac{\sin(x) = \cos(a)}{\cos(x) = \cos(a)}}_{x = a \pm 2k\pi \text{ or } x = -a \pm 2k\pi}$$

$$\underbrace{x = a \pm 2k\pi \text{ or } x = -a \pm 2k\pi}_{x = a \pm k\pi \text{ and } x \neq \frac{\pi}{2} \pm k\pi$$

The following relations exist between the inverse goniometric functions:

$$\arctan(x) = \arcsin\left(\frac{x}{\sqrt{x^2+1}}\right) = \arccos\left(\frac{1}{\sqrt{x^2+1}}\right) , \quad \sin(\arccos(x)) = \sqrt{1-x^2}$$

1.2 Hyperbolic functions

The hyperbolic functions are defined by:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
, $\cosh(x) = \frac{e^x + e^{-x}}{2}$, $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$

From this follows that $\cosh^2(x) - \sinh^2(x) = 1$. Further holds:

$$\operatorname{arsinh}(x) = \ln |x + \sqrt{x^2 + 1}|$$
, $\operatorname{arcosh}(x) = \operatorname{arsinh}(\sqrt{x^2 - 1})$

1.3 Calculus

The derivative of a function is defined as:

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives obey the following algebraic rules:

$$d(x\pm y) = dx\pm dy \quad , \quad d(xy) = xdy + ydx \quad , \quad d\left(\frac{x}{y}\right) = \frac{ydx - xdy}{y^2}$$

For the derivative of the inverse function $f^{\text{inv}}(y)$, defined by $f^{\text{inv}}(f(x)) = x$, holds at point P = (x, f(x)):

$$\left(\frac{df^{\text{inv}}(y)}{dy}\right)_P \cdot \left(\frac{df(x)}{dx}\right)_P = 1$$

Chain rule: if f = f(g(x)), then holds

$$\frac{df}{dx} = \frac{df}{dg}\frac{dg}{dx}$$

Further, for the derivatives of products of functions holds:

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} \cdot g^{(k)}$$

For the primitive function F(x) holds: F'(x) = f(x). An overview of derivatives and primitives is:

y = f(x)	dy/dx = f'(x)	$\int f(x) dx$
ax^n	anx^{n-1}	$a(n+1)^{-1}x^{n+1}$
1/x	$-x^{-2}$	$\ln x $
a	0	ax
a^x	$a^x \ln(a)$	$a^x/\ln(a)$
e^x	e^x	e^x
$a \log(x)$	$(x\ln(a))^{-1}$	$(x\ln(x) - x)/\ln(a)$
$\ln(x)$	1/x	$x\ln(x) - x$
$\sin(x)$	$\cos(x)$	$-\cos(x)$
$\cos(x)$	$-\sin(x)$	$\sin(x)$
$\tan(x)$	$\cos^{-2}(x)$	$-\ln \cos(x) $
$\sin^{-1}(x)$	$-\sin^{-2}(x)\cos(x)$	$\ln \tan(\frac{1}{2}x) $
$\sinh(x)$	$\cosh(x)$	$\cosh(\tilde{x})$
$\cosh(x)$	$\sinh(x)$	$\sinh(x)$
$\arcsin(x)$	$1/\sqrt{1-x^2}$	$x \arcsin(x) + \sqrt{1 - x^2}$
$\arccos(x)$	$-1/\sqrt{1-x^2}$	$x \arccos(x) - \sqrt{1 - x^2}$
$\arctan(x)$	$(1+x^2)^{-1}$	$x \arctan(x) - \frac{1}{2}\ln(1+x^2)$
$(a+x^2)^{-1/2}$	$-x(a+x^2)^{-3/2}$	$\ln x + \sqrt{a + x^2} $
$(a^2 - x^2)^{-1}$	$2x(a^2+x^2)^{-2}$	$\frac{1}{2a}\ln (a+x)/(a-x) $

The curvature ρ of a curve is given by: $\rho = \frac{(1+(y')^2)^{3/2}}{|y''|}$

The theorem of De 'l Hôpital: if f(a) = 0 and g(a) = 0, then is $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

1.4 Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \quad , \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \quad , \quad \lim_{x \to 0} \frac{\tan(x)}{x} = 1 \quad , \quad \lim_{x \to 0} (1+k)^{1/k} = e \quad , \quad \lim_{x \to \infty} \left(1 + \frac{n}{x}\right)^x = e^n$$

$$\lim_{x \to 0} x^a \ln(x) = 0 \quad , \quad \lim_{x \to \infty} \frac{\ln^p(x)}{x^a} = 0 \quad , \quad \lim_{x \to 0} \frac{\ln(x+a)}{x} = a \quad , \quad \lim_{x \to \infty} \frac{x^p}{a^x} = 0 \quad \text{als } |a| > 1.$$

$$\lim_{x \to 0} \left(a^{1/x} - 1\right) = \ln(a) \quad , \quad \lim_{x \to 0} \frac{\arcsin(x)}{x} = 1 \quad , \quad \lim_{x \to \infty} \sqrt[n]{x} = 1$$

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number z = a + bi with a and $b \in \mathbb{R}$. a is the real part, b the imaginary part of z. $|z| = \sqrt{a^2 + b^2}$. By definition holds: $i^2 = -1$. Every complex number can be written as $z = |z| \exp(i\varphi)$, with $\tan(\varphi) = b/a$. The complex conjugate of z is defined as $\overline{z} = z^* := a - bi$. Further holds:

$$\begin{array}{rcl} (a+bi)(c+di) &=& (ac-bd)+i(ad+bc)\\ (a+bi)+(c+di) &=& a+c+i(b+d)\\ && \frac{a+bi}{c+di} &=& \frac{(ac+bd)+i(bc-ad)}{c^2+d^2} \end{array}$$

Goniometric functions can be written as complex exponents:

$$\sin(x) = \frac{1}{2i} (e^{ix} - e^{-ix})$$

$$\cos(x) = \frac{1}{2} (e^{ix} + e^{-ix})$$

From this follows that $\cos(ix) = \cosh(x)$ and $\sin(ix) = i\sinh(x)$. Further follows from this that $e^{\pm ix} = \cos(x) \pm i\sin(x)$, so $e^{iz} \neq 0 \forall z$. Also the theorem of De Moivre follows from this: $(\cos(\varphi) + i\sin(\varphi))^n = \cos(n\varphi) + i\sin(n\varphi)$.

Products and quotients of complex numbers can be written as:

$$z_{1} \cdot z_{2} = |z_{1}| \cdot |z_{2}|(\cos(\varphi_{1} + \varphi_{2}) + i\sin(\varphi_{1} + \varphi_{2}))$$

$$\frac{z_{1}}{z_{2}} = \frac{|z_{1}|}{|z_{2}|}(\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2}))$$

The following can be derived:

$$|z_1 + z_2| \le |z_1| + |z_2|$$
, $|z_1 - z_2| \ge ||z_1| - |z_2||$

And from $z = r \exp(i\theta)$ follows: $\ln(z) = \ln(r) + i\theta$, $\ln(z) = \ln(z) \pm 2n\pi i$.

1.5.2 Quaternions

Quaternions are defined as: z = a + bi + cj + dk, with $a, b, c, d \in \mathbb{R}$ and $i^2 = j^2 = k^2 = -1$. The products of i, j, k with each other are given by ij = -ji = k, jk = -kj = i and ki = -ik = j.

1.6 Geometry

1.6.1 Triangles

The sine rule is:

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

Here, α is the angle opposite to a, β is opposite to b and γ opposite to c. The cosine rule is: $a^2 = b^2 + c^2 - 2bc \cos(\alpha)$. For each triangle holds: $\alpha + \beta + \gamma = 180^{\circ}$.

Further holds:

$$\frac{\tan(\frac{1}{2}(\alpha+\beta))}{\tan(\frac{1}{2}(\alpha-\beta))} = \frac{a+b}{a-b}$$

The surface of a triangle is given by $\frac{1}{2}ab\sin(\gamma) = \frac{1}{2}ah_a = \sqrt{s(s-a)(s-b)(s-c)}$ with h_a the perpendicular on a and $s = \frac{1}{2}(a+b+c)$.

1.6.2 Curves

Cycloid: if a circle with radius *a* rolls along a straight line, the trajectory of a point on this circle has the following parameter equation:

$$x = a(t + \sin(t))$$
, $y = a(1 + \cos(t))$

Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point on the small circle has the following parameter equation:

$$x = a \sin\left(\frac{R+a}{a}t\right) + (R+a)\sin(t) \quad , \quad y = a \cos\left(\frac{R+a}{a}t\right) + (R+a)\cos(t)$$

Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a point on the small circle has the following parameter equation:

$$x = a \sin\left(\frac{R-a}{a}t\right) + (R-a)\sin(t) \quad , \quad y = -a\cos\left(\frac{R-a}{a}t\right) + (R-a)\cos(t)$$

A hypocycloid with a = R is called a **cardioid**. It has the following parameter equation in polar coordinates: $r = 2a[1 - \cos(\varphi)].$

1.7 Vectors

The inner product is defined by: $\vec{a} \cdot \vec{b} = \sum_{i} a_{i}b_{i} = |\vec{a}| \cdot |\vec{b}| \cos(\varphi)$

where φ is the angle between \vec{a} and \vec{b} . The *external product* is in \mathbb{R}^3 defined by:

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Further holds: $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin(\varphi)$, and $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$.

1.8 Series

1.8.1 Expansion

The Binomium of Newton is:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

where $\binom{n}{k} := \frac{n!}{k!(n-k)!}$.

By subtracting the series $\sum_{k=0}^{n} r^{k}$ and $r \sum_{k=0}^{n} r^{k}$ one finds:

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

and for |r| < 1 this gives the geometric series: $\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$.

The arithmetic series is given by: $\sum_{n=0}^{N} (a+nV) = a(N+1) + \frac{1}{2}N(N+1)V.$

The expansion of a function around the point a is given by the Taylor series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a) + R$$

where the remainder is given by:

$$R_n(h) = (1-\theta)^n \frac{h^n}{n!} f^{(n+1)}(\theta h)$$

and is subject to:

$$\frac{mh^{n+1}}{(n+1)!} \le R_n(h) \le \frac{Mh^{n+1}}{(n+1)!}$$

From this one can deduce that

$$(1-x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n$$

One can derive that:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} , \quad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90} , \quad \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$
$$\sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1) , \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12} , \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln(2)$$
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2} , \quad \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8} , \quad \sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96} , \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)^3} = \frac{\pi^3}{32}$$

1.8.2 Convergence and divergence of series

If $\sum_{n} |u_n|$ converges, $\sum_{n} u_n$ also converges.

If $\lim_{n \to \infty} u_n \neq 0$ then $\sum_n u_n$ is divergent.

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).

If $\int_{p}^{\infty} f(x)dx < \infty$, then $\sum_{n} f_{n}$ is convergent. If $u_{n} > 0 \ \forall n$ then is $\sum_{n} u_{n}$ convergent if $\sum_{n} \ln(u_{n} + 1)$ is convergent.

If $u_n = c_n x^n$ the radius of convergence ρ of $\sum_n u_n$ is given by: $\frac{1}{\rho} = \lim_{n \to \infty} \sqrt[n]{|c_n|} = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|.$

The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$.

If: $\lim_{n \to \infty} \frac{u_n}{v_n} = p$, than the following is true: if p > 0 than $\sum_n u_n$ and $\sum_n v_n$ are both divergent or both convergent, if p = 0 holds: if $\sum_n v_n$ is convergent, than $\sum_n u_n$ is also convergent.

If L is defined by: $L = \lim_{n \to \infty} \sqrt[n]{|n_n|}$, or by: $L = \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right|$, then is $\sum_n u_n$ divergent if L > 1 and convergent if L < 1.

1.8.3 Convergence and divergence of functions

f(x) is continuous in x = a only if the upper - and lower limit are equal: $\lim_{x\uparrow a} f(x) = \lim_{x\downarrow a} f(x)$. This is written as: $f(a^-) = f(a^+)$.

If f(x) is continuous in a and: $\lim_{x\uparrow a} f'(x) = \lim_{x\downarrow a} f'(x)$, than f(x) is differentiable in x = a.

We define: $||f||_W := \sup(|f(x)| | x \in W)$, and $\lim_{x \to \infty} f_n(x) = f(x)$. Than holds: $\{f_n\}$ is uniform convergent if $\lim_{n \to \infty} ||f_n - f|| = 0$, or: $\forall (\varepsilon > 0) \exists (N) \forall (n \ge N) ||f_n - f|| < \varepsilon$.

Weierstrass' test: if $\sum ||u_n||_W$ is convergent, than $\sum u_n$ is uniform convergent.

We define
$$S(x) = \sum_{n=N}^{\infty} u_n(x)$$
 and $F(y) = \int_a^b f(x, y) dx := F$. Then it can be proved that:

Theorem	For	Demands on W	Than holds on W
С	rows	f_n continuous, $\{f_n\}$ uniform convergent	f is continuous
	series	S(x) uniform convergent, u_n continuous	S is continuous
	integral	f is continuous	F is continuous
Ι	rows	f_n can be integrated,	f_n can be integrated,
		$\{f_n\}$ uniform convergent	$\int f(x)dx = \lim_{n \to \infty} \int f_n dx$
	series	S(x) is uniform convergent, u_n can be integrated	S can be integrated, $\int S dx = \sum \int u_n dx$
	integral	f is continuous	$\int F dy = \iint f(x,y) dx dy$
D	rows	$\{f_n\} \in \mathbb{C}^{-1}; \{f'_n\} \text{ unif.conv} \to \phi$	$f' = \phi(x)$
	series	$u_n \in \mathbb{C}^{-1}; \sum u_n \text{ conv}; \sum u'_n \text{ u.c.}$	$S'(x) = \sum u'_n(x)$
	integral	$\partial f/\partial y$ continuous	$F_y = \int f_y(x, y) dx$

1.9 Products and quotients

For $a, b, c, d \in \mathbb{R}$ holds:

The distributive property: (a + b)(c + d) = ac + ad + bc + bdThe associative property: a(bc) = b(ac) = c(ab) and a(b + c) = ab + acThe commutative property: a + b = b + a, ab = ba.

Further holds:

$$\frac{a^{2n} - b^{2n}}{a \pm b} = a^{2n-1} \pm a^{2n-2}b + a^{2n-3}b^2 \pm \dots \pm b^{2n-1} \quad , \quad \frac{a^{2n+1} - b^{2n+1}}{a+b} = \sum_{k=0}^n a^{2n-k}b^{2k} + b^{2k} + b^{2k} = a^2 \pm b^2 + b$$

1.10 Logarithms

Definition: $a \log(x) = b \Leftrightarrow a^b = x$. For logarithms with base *e* one writes $\ln(x)$. **Rules**: $\log(x^n) = n \log(x)$, $\log(a) + \log(b) = \log(ab)$, $\log(a) - \log(b) = \log(a/b)$.

1.11 Polynomials

Equations of the type

with K

$$\sum_{k=0}^{n} a_k x^k = 0$$

have n roots which may be equal to each other. Each polynomial p(z) of order $n \ge 1$ has at least one root in \mathbb{C} . If all $a_k \in \mathbb{R}$ holds: when x = p with $p \in \mathbb{C}$ a root, than p^* is also a root. Polynomials up to and including order 4 have a general analytical solution, for polynomials with order ≥ 5 there does not exist a general analytical solution.

For $a, b, c \in \mathbb{R}$ and $a \neq 0$ holds: the 2nd order equation $ax^2 + bx + c = 0$ has the general solution:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For $a, b, c, d \in \mathbb{R}$ and $a \neq 0$ holds: the 3rd order equation $ax^3 + bx^2 + cx + d = 0$ has the general analytical solution:

$$x_{1} = K - \frac{3ac - b^{2}}{9a^{2}K} - \frac{b}{3a}$$

$$x_{2} = x_{3}^{*} = -\frac{K}{2} + \frac{3ac - b^{2}}{18a^{2}K} - \frac{b}{3a} + i\frac{\sqrt{3}}{2}\left(K + \frac{3ac - b^{2}}{9a^{2}K}\right)$$

$$= \left(\frac{9abc - 27da^{2} - 2b^{3}}{54a^{3}} + \frac{\sqrt{3}\sqrt{4ac^{3} - c^{2}b^{2} - 18abcd + 27a^{2}d^{2} + 4db^{3}}}{18a^{2}}\right)^{1/3}$$

1.12 Primes

A prime is a number $\in \mathbb{N}$ that can only be divided by itself and 1. There are an infinite number of primes. Proof: suppose that the collection of primes P would be finite, than construct the number $q = 1 + \prod_{p \in P} p$, than holds q = 1(p) and so Q cannot be written as a product of primes from P. This is a contradiction. If $\pi(x)$ is the number of primes $\leq x$, than holds:

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1 \quad \text{and} \quad \lim_{x \to \infty} \frac{\pi(x)}{\int_{2}^{x} \frac{dt}{\ln(t)}} = 1$$

For each $N \ge 2$ there is a prime between N and 2N.

The numbers $F_k := 2^k + 1$ with $k \in \mathbb{N}$ are called *Fermat numbers*. Many Fermat numbers are prime.

The numbers $M_k := 2^k - 1$ are called *Mersenne numbers*. They occur when one searches for *perfect numbers*, which are numbers $n \in \mathbb{N}$ which are the sum of their different dividers, for example 6 = 1+2+3. There are 23 Mersenne numbers for k < 12000 which are prime: for $k \in \{2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213\}.$

To check if a given number n is prime one can use a sieve method. The first known sieve method was developed by Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don't prove that a number is prime but give a large probability.

- 1. Take the first 4 primes: $b = \{2, 3, 5, 7\},\$
- 2. Take $w(b) = b^{n-1} \mod n$, for each b,
- 3. If w = 1 for each b, then n is probably prime. For each other value of w, n is certainly not prime.

Chapter 3

Calculus

3.1 Integrals

3.1.1 Arithmetic rules

The primitive function F(x) of f(x) obeys the rule F'(x) = f(x). With F(x) the primitive of f(x) holds for the definite integral

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

If u = f(x) holds:

$$\int_{a}^{b} g(f(x))df(x) = \int_{f(a)}^{f(b)} g(u)du$$

Partial integration: with F and G the primitives of f and g holds:

$$\int f(x) \cdot g(x) dx = f(x)G(x) - \int G(x) \frac{df(x)}{dx} dx$$

A derivative can be brought under the intergral sign (see section 1.8.3 for the required conditions):

$$\frac{d}{dy} \left[\int_{x=g(y)}^{x=h(y)} f(x,y) dx \right] = \int_{x=g(y)}^{x=h(y)} \frac{\partial f(x,y)}{\partial y} dx - f(g(y),y) \frac{dg(y)}{dy} + f(h(y),y) \frac{dh(y)}{dy}$$

3.1.2 Arc lengts, surfaces and volumes

The arc length ℓ of a curve y(x) is given by:

$$\ell = \int \sqrt{1 + \left(\frac{dy(x)}{dx}\right)^2} dx$$

The arc length ℓ of a parameter curve $F(\vec{x}(t))$ is:

$$\ell = \int F ds = \int F(\vec{x}(t)) |\dot{\vec{x}}(t)| dt$$

with

$$\vec{t} = \frac{d\vec{x}}{ds} = \frac{\vec{x}(t)}{|\vec{x}(t)|} \quad , \quad |\vec{t}| = 1$$
$$\int (\vec{v}, \vec{t}) ds = \int (\vec{v}, \dot{\vec{t}}(t)) dt = \int (v_1 dx + v_2 dy + v_3 dz)$$

The surface A of a solid of revolution is:

$$A = 2\pi \int y \sqrt{1 + \left(\frac{dy(x)}{dx}\right)^2} dx$$

The volume V of a solid of revolution is:

$$V = \pi \int f^2(x) dx$$

3.1.3 Separation of quotients

Every rational function P(x)/Q(x) where P and Q are polynomials can be written as a linear combination of functions of the type $(x - a)^k$ with $k \in \mathbb{Z}$, and of functions of the type

$$\frac{px+q}{((x-a)^2+b^2)^n}$$

with b > 0 and $n \in \mathbb{N}$. So:

$$\frac{p(x)}{(x-a)^n} = \sum_{k=1}^n \frac{A_k}{(x-a)^k} \quad , \quad \frac{p(x)}{((x-b)^2 + c^2)^n} = \sum_{k=1}^n \frac{A_k x + B}{((x-b)^2 + c^2)^k}$$

Recurrent relation: for $n \neq 0$ holds:

$$\int \frac{dx}{(x^2+1)^{n+1}} = \frac{1}{2n} \frac{x}{(x^2+1)^n} + \frac{2n-1}{2n} \int \frac{dx}{(x^2+1)^n}$$

3.1.4 Special functions

Elliptic functions

Elliptic functions can be written as a power series as follows:

$$\sqrt{1 - k^2 \sin^2(x)} = 1 - \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n-1)} k^{2n} \sin^{2n}(x)$$
$$\frac{1}{\sqrt{1 - k^2 \sin^2(x)}} = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} k^{2n} \sin^{2n}(x)$$

with n!! = n(n-2)!!.

The Gamma function

The gamma function $\Gamma(y)$ is defined by:

$$\Gamma(y) = \int_{0}^{\infty} e^{-x} x^{y-1} dx$$

One can derive that $\Gamma(y+1) = y\Gamma(y) = y!$. This is a way to define faculties for non-integers. Further one can derive that

$$\Gamma(n+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^n} (2n-1)!!$$
 and $\Gamma^{(n)}(y) = \int_0^\infty e^{-x} x^{y-1} \ln^n(x) dx$

The Beta function

The betafunction $\beta(p,q)$ is defined by:

$$\beta(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$$

with p and q > 0. The beta and gamma functions are related by the following equation:

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

The Delta function

The delta function $\delta(x)$ is an infinitely thin peak function with surface 1. It can be defined by:

$$\delta(x) = \lim_{\varepsilon \to 0} P(\varepsilon, x) \quad \text{with} \quad P(\varepsilon, x) = \left\{ \begin{array}{ll} 0 & \text{for } |x| > \varepsilon \\ \frac{1}{2\varepsilon} & \text{when } |x| < \varepsilon \end{array} \right.$$

Some properties are:

$$\int_{-\infty}^{\infty} \delta(x) dx = 1 \quad , \quad \int_{-\infty}^{\infty} F(x) \delta(x) dx = F(0)$$

3.1.5 Goniometric integrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines $tan(\frac{1}{2}x) := t$:

$$dx = \frac{2dt}{1+t^2}$$
, $\cos(x) = \frac{1-t^2}{1+t^2}$, $\sin(x) = \frac{2t}{1+t^2}$

Each integral of the type $\int R(x, \sqrt{ax^2 + bx + c}) dx$ can be converted into one of the types that were treated in section 3.1.3. After this conversion one can substitute in the integrals of the type:

$$\int R(x,\sqrt{x^2+1})dx \quad : \quad x = \tan(\varphi) \ , dx = \frac{d\varphi}{\cos(\varphi)} \ \text{of} \ \sqrt{x^2+1} = t+x$$
$$\int R(x,\sqrt{1-x^2})dx \quad : \quad x = \sin(\varphi) \ , dx = \cos(\varphi)d\varphi \ \text{of} \ \sqrt{1-x^2} = 1-tx$$
$$\int R(x,\sqrt{x^2-1})dx \quad : \quad x = \frac{1}{\cos(\varphi)} \ , dx = \frac{\sin(\varphi)}{\cos^2(\varphi)}d\varphi \ \text{of} \ \sqrt{x^2-1} = x-t$$

These definite integrals are easily solved:

$$\int_{0}^{\pi/2} \cos^{n}(x) \sin^{m}(x) dx = \frac{(n-1)!!(m-1)!!}{(m+n)!!} \cdot \begin{cases} \pi/2 & \text{when } m \text{ and } n \text{ are both even} \\ 1 & \text{in all other cases} \end{cases}$$

Some important integrals are:

$$\int_{0}^{\infty} \frac{xdx}{e^{ax}+1} = \frac{\pi^2}{12a^2} \quad , \quad \int_{-\infty}^{\infty} \frac{x^2dx}{(e^x+1)^2} = \frac{\pi^2}{3} \quad , \quad \int_{0}^{\infty} \frac{x^3dx}{e^x+1} = \frac{\pi^4}{15}$$

3.2 Functions with more variables

3.2.1 Derivatives

The partial derivative with respect to x of a function f(x, y) is defined by:

$$\left(\frac{\partial f}{\partial x}\right)_{x_0} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

The *directional derivative* in the direction of α is defined by:

$$\frac{\partial f}{\partial \alpha} = \lim_{r \downarrow 0} \frac{f(x_0 + r\cos(\alpha), y_0 + r\sin(\alpha)) - f(x_0, y_0)}{r} = (\vec{\nabla}f, (\sin\alpha, \cos\alpha)) = \frac{\nabla f \cdot \vec{v}}{|\vec{v}|}$$

When one changes to coordinates f(x(u, v), y(u, v)) holds:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$$

If x(t) and y(t) depend only on one parameter t holds:

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

The *total differential* df of a function of 3 variables is given by:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$$

 So

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} + \frac{\partial f}{\partial z}\frac{dz}{dx}$$

The tangent in point \vec{x}_0 at the surface f(x, y) = 0 is given by the equation $f_x(\vec{x}_0)(x-x_0) + f_y(\vec{x}_0)(y-y_0) = 0$. The tangent plane in \vec{x}_0 is given by: $f_x(\vec{x}_0)(x-x_0) + f_y(\vec{x}_0)(y-y_0) = z - f(\vec{x}_0)$.

3.2.2 Taylor series

A function of two variables can be expanded as follows in a Taylor series:

$$f(x_0 + h, y_0 + k) = \sum_{p=0}^{n} \frac{1}{p!} \left(h \frac{\partial^p}{\partial x^p} + k \frac{\partial^p}{\partial y^p} \right) f(x_0, y_0) + R(n)$$

with R(n) the residual error and

$$\left(h\frac{\partial^p}{\partial x^p} + k\frac{\partial^p}{\partial y^p}\right)f(a,b) = \sum_{m=0}^p \binom{p}{m}h^m k^{p-m}\frac{\partial^p f(a,b)}{\partial x^m \partial y^{p-m}}$$

3.2.3 Extrema

When f is continuous on a compact boundary V there exists a global maximum and a global minumum for f on this boundary. A boundary is called compact if it is limited and closed.

Possible extrema of f(x, y) on a boundary $V \in \mathbb{R}^2$ are:

- 1. Points on V where f(x, y) is not differentiable,
- 2. Points where $\vec{\nabla} f = \vec{0}$,
- 3. If the boundary V is given by $\varphi(x,y) = 0$, than all points where $\vec{\nabla} f(x,y) + \lambda \vec{\nabla} \varphi(x,y) = 0$ are possible for extrema. This is the multiplicator method of Lagrange, λ is called a multiplicator.

The same as in \mathbb{R}^2 holds in \mathbb{R}^3 when the area to be searched is constrained by a compact V, and V is defined by $\varphi_1(x, y, z) = 0$ and $\varphi_2(x, y, z) = 0$ for extrema of f(x, y, z) for points (1) and (2). Point (3) is rewritten as follows: possible extrema are points where $\vec{\nabla}f(x, y, z) + \lambda_1 \vec{\nabla}\varphi_1(x, y, z) + \lambda_2 \vec{\nabla}\varphi_2(x, y, z) = 0$.

3.2.4 The ∇ -operator

In cartesian coordinates (x, y, z) holds:

$$\vec{\nabla} = \frac{\partial}{\partial x}\vec{e}_x + \frac{\partial}{\partial y}\vec{e}_y + \frac{\partial}{\partial z}\vec{e}_z$$

grad
$$f = \frac{\partial f}{\partial x}\vec{e}_x + \frac{\partial f}{\partial y}\vec{e}_y + \frac{\partial f}{\partial z}\vec{e}_z$$

div
$$\vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$$

$$\begin{array}{lll} \operatorname{curl} \vec{a} & = & \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \vec{e}_x + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \vec{e}_y + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \vec{e}_z \\ \nabla^2 f & = & \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \end{array}$$

In cylindrical coordinates (r,φ,z) holds:

$$\begin{split} \vec{\nabla} &= \frac{\partial}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial}{\partial \varphi} \vec{e_\varphi} + \frac{\partial}{\partial z} \vec{e_z} \\ \text{grad} f &= \frac{\partial f}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial f}{\partial \varphi} \vec{e_\varphi} + \frac{\partial f}{\partial z} \vec{e_z} \\ \text{div } \vec{a} &= \frac{\partial a_r}{\partial r} + \frac{a_r}{r} + \frac{1}{r} \frac{\partial a_\varphi}{\partial \varphi} + \frac{\partial a_z}{\partial z} \\ \text{curl } \vec{a} &= \left(\frac{1}{r} \frac{\partial a_z}{\partial \varphi} - \frac{\partial a_\varphi}{\partial z}\right) \vec{e_r} + \left(\frac{\partial a_r}{\partial z} - \frac{\partial a_z}{\partial r}\right) \vec{e_\varphi} + \left(\frac{\partial a_\varphi}{\partial r} + \frac{a_\varphi}{r} - \frac{1}{r} \frac{\partial a_r}{\partial \varphi}\right) \vec{e_z} \\ \nabla^2 f &= \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2} \end{split}$$

In spherical coordinates (r, θ, φ) holds:

$$\begin{split} \vec{\nabla} &= \frac{\partial}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \vec{e}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \vec{e}_{\varphi} \\ \text{grad} f &= \frac{\partial f}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \vec{e}_{\varphi} \\ \text{div} \vec{a} &= \frac{\partial a_r}{\partial r} + \frac{2a_r}{r} + \frac{1}{r} \frac{\partial a_{\theta}}{\partial \theta} + \frac{a_{\theta}}{r \tan \theta} + \frac{1}{r \sin \theta} \frac{\partial a_{\varphi}}{\partial \varphi} \\ \text{curl} \vec{a} &= \left(\frac{1}{r} \frac{\partial a_{\varphi}}{\partial \theta} + \frac{a_{\theta}}{r \tan \theta} - \frac{1}{r \sin \theta} \frac{\partial a_{\theta}}{\partial \varphi}\right) \vec{e}_r + \left(\frac{1}{r \sin \theta} \frac{\partial a_r}{\partial \varphi} - \frac{\partial a_{\varphi}}{\partial r} - \frac{a_{\varphi}}{r}\right) \vec{e}_{\theta} + \\ &\qquad \left(\frac{\partial a_{\theta}}{\partial r} + \frac{a_{\theta}}{r} - \frac{1}{r} \frac{\partial a_r}{\partial \theta}\right) \vec{e}_{\varphi} \\ \nabla^2 f &= \frac{\partial^2 f}{\partial r^2} + \frac{2}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{1}{r^2 \tan \theta} \frac{\partial f}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2} \end{split}$$

General orthonormal curvilinear coordinates (u, v, w) can be derived from cartesian coordinates by the transformation $\vec{x} = \vec{x}(u, v, w)$. The unit vectors are given by:

$$\vec{e}_u = rac{1}{h_1} rac{\partial \vec{x}}{\partial u} , \ \vec{e}_v = rac{1}{h_2} rac{\partial \vec{x}}{\partial v} , \ \vec{e}_w = rac{1}{h_3} rac{\partial \vec{x}}{\partial w}$$

where the terms h_i give normalization to length 1. The differential operators are than given by:

$$grad f = \frac{1}{h_1} \frac{\partial f}{\partial u} \vec{e}_u + \frac{1}{h_2} \frac{\partial f}{\partial v} \vec{e}_v + \frac{1}{h_3} \frac{\partial f}{\partial w} \vec{e}_w$$

div $\vec{a} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial}{\partial u} (h_2 h_3 a_u) + \frac{\partial}{\partial v} (h_3 h_1 a_v) + \frac{\partial}{\partial w} (h_1 h_2 a_w) \right)$

$$\begin{aligned} \operatorname{curl} \vec{a} &= \frac{1}{h_2 h_3} \left(\frac{\partial (h_3 a_w)}{\partial v} - \frac{\partial (h_2 a_v)}{\partial w} \right) \vec{e_u} + \frac{1}{h_3 h_1} \left(\frac{\partial (h_1 a_u)}{\partial w} - \frac{\partial (h_3 a_w)}{\partial u} \right) \vec{e_v} + \\ & \frac{1}{h_1 h_2} \left(\frac{\partial (h_2 a_v)}{\partial u} - \frac{\partial (h_1 a_u)}{\partial v} \right) \vec{e_w} \\ \nabla^2 f &= \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u} \left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{h_3 h_1}{h_2} \frac{\partial f}{\partial v} \right) + \frac{\partial}{\partial w} \left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial w} \right) \right] \end{aligned}$$

Some properties of the ∇ -operator are:

$$\begin{aligned} \operatorname{div}(\phi \vec{v}) &= \phi \operatorname{div} \vec{v} + \operatorname{grad} \phi \cdot \vec{v} & \operatorname{curl}(\phi \vec{v}) &= \phi \operatorname{curl} \vec{v} + (\operatorname{grad} \phi) \times \vec{v} & \operatorname{curl} \operatorname{grad} \phi &= \vec{0} \\ \operatorname{div}(\vec{u} \times \vec{v}) &= \vec{v} \cdot (\operatorname{curl} \vec{u}) - \vec{u} \cdot (\operatorname{curl} \vec{v}) & \operatorname{curl} \operatorname{curl} \vec{v} &= \operatorname{grad} \operatorname{div} \vec{v} - \nabla^2 \vec{v} & \operatorname{div} \operatorname{curl} \vec{v} &= 0 \\ \operatorname{div} \operatorname{grad} \phi &= \nabla^2 \phi & \nabla^2 \vec{v} & (\nabla^2 v_1, \nabla^2 v_2, \nabla^2 v_3) \end{aligned}$$

Here, \vec{v} is an arbitrary vector field and ϕ an arbitrary scalar field.

3.2.5 Integral theorems

Some important integral theorems are:

Here the orientable surface $\iint d^2 A$ is bounded by the Jordan curve s(t).

3.2.6 Multiple integrals

Let A be a closed curve given by f(x, y) = 0, than the surface A inside the curve in \mathbb{R}^2 is given by

$$A = \iint d^2 A = \iint dx dy$$

Let the surface A be defined by the function z = f(x, y). The volume V bounded by A and the xy plane is than given by:

$$V = \iint f(x, y) dx dy$$

The volume inside a closed surface defined by z = f(x, y) is given by:

$$V = \iiint d^{3}V = \iint f(x, y)dxdy = \iiint dxdydz$$

3.2.7 Coordinate transformations

The expressions d^2A and d^3V transform as follows when one changes coordinates to $\vec{u} = (u, v, w)$ through the transformation x(u, v, w):

$$V = \iiint f(x, y, z) dx dy dz = \iiint f(\vec{x}(\vec{u})) \left| \frac{\partial \vec{x}}{\partial \vec{u}} \right| du dv du$$

In $I\!\!R^2$ holds:

$$\frac{\partial \vec{x}}{\partial \vec{u}} = \left| \begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array} \right|$$

Let the surface A be defined by z = F(x, y) = X(u, v). Than the volume bounded by the xy plane and F is given by:

$$\iint_{S} f(\vec{x}) d^{2}A = \iint_{G} f(\vec{x}(\vec{u})) \left| \frac{\partial X}{\partial u} \times \frac{\partial X}{\partial v} \right| du dv = \iint_{G} f(x, y, F(x, y)) \sqrt{1 + \partial_{x} F^{2} + \partial_{y} F^{2}} dx dy$$

3.3 Orthogonality of functions

The inner product of two functions f(x) and g(x) on the interval [a, b] is given by:

$$(f,g) = \int_{a}^{b} f(x)g(x)dx$$

or, when using a weight function p(x), by:

$$(f,g) = \int_{a}^{b} p(x)f(x)g(x)dx$$

The norm ||f|| follows from: $||f||^2 = (f, f)$. A set functions f_i is orthonormal if $(f_i, f_j) = \delta_{ij}$. Each function f(x) can be written as a sum of orthogonal functions:

$$f(x) = \sum_{i=0}^{\infty} c_i g_i(x)$$

and $\sum c_i^2 \leq ||f||^2$. Let the set g_i be orthogonal, than it follows:

$$c_i = \frac{f, g_i}{(g_i, g_i)}$$

3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal basis $(\cos(nx), \sin(nx))$ we have a Fourier series.

A periodical function f(x) with period 2L can be written as:

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

Due to the orthogonality follows for the coefficients:

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} f(t)dt \quad , \quad a_{n} = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt \quad , \quad b_{n} = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt$$

A Fourier series can also be written as a sum of complex exponents:

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \mathrm{e}^{inx}$$

with

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-inx} dx$$

The Fourier transform of a function f(x) gives the transformed function $\hat{f}(\omega)$:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-i\omega x} dx$$

The inverse transformation is given by:

$$\frac{1}{2}\left[f(x^+) + f(x^-)\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) \mathrm{e}^{i\omega x} d\omega$$

where $f(x^+)$ and $f(x^-)$ are defined by the lower - and upper limit:

$$f(a^{-}) = \lim_{x \uparrow a} f(x) , \quad f(a^{+}) = \lim_{x \downarrow a} f(x)$$

For continuous functions is $\frac{1}{2} \left[f(x^+) + f(x^-) \right] = f(x)$.

Chapter 4

Differential equations

4.1 Linear differential equations

4.1.1 First order linear DE

The general solution of a linear differential equation is given by $y_{\rm A} = y_{\rm H} + y_{\rm P}$, where $y_{\rm H}$ is the solution of the homogeneous equation and $y_{\rm P}$ is a particular solution.

A first order differential equation is given by: y'(x) + a(x)y(x) = b(x). Its homogeneous equation is y'(x) + a(x)y(x) = 0.

The solution of the homogeneous equation is given by

$$y_{\rm H} = k \exp\left(\int a(x)dx\right)$$

Suppose that a(x) = a = constant.

Substitution of $\exp(\lambda x)$ in the homogeneous equation leads to the *characteristic equation* $\lambda + a = 0$ $\Rightarrow \lambda = -a$.

Suppose $b(x) = \alpha \exp(\mu x)$. Than one can distinguish two cases:

- 1. $\lambda \neq \mu$: a particular solution is: $y_{\rm P} = \exp(\mu x)$
- 2. $\lambda = \mu$: a particular solution is: $y_{\rm P} = x \exp(\mu x)$

When a DE is solved by variation of parameters one writes: $y_{\rm P}(x) = y_{\rm H}(x)f(x)$, and than one solves f(x) from this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is given by: y''(x) + ay'(x) + by(x) = c(x). If c(x) = c =constant there exists a particular solution $y_{\rm P} = c/b$.

Substitution of $y = \exp(\lambda x)$ leads to the characteristic equation $\lambda^2 + a\lambda + b = 0$.

There are now 2 possibilities:

- 1. $\lambda_1 \neq \lambda_2$: than $y_{\rm H} = \alpha \exp(\lambda_1 x) + \beta \exp(\lambda_2 x)$.
- 2. $\lambda_1 = \lambda_2 = \lambda$: than $y_{\rm H} = (\alpha + \beta x) \exp(\lambda x)$.

If $c(x) = p(x) \exp(\mu x)$ where p(x) is a polynomial there are 3 possibilities:

- 1. $\lambda_1, \lambda_2 \neq \mu$: $y_{\rm P} = q(x) \exp(\mu x)$.
- 2. $\lambda_1 = \mu, \lambda_2 \neq \mu$: $y_{\rm P} = xq(x)\exp(\mu x)$.
- 3. $\lambda_1 = \lambda_2 = \mu$: $y_P = x^2 q(x) \exp(\mu x)$.

where q(x) is a polynomial of the same order as p(x).

When: $y''(x) + \omega^2 y(x) = \omega f(x)$ and y(0) = y'(0) = 0 follows: $y(x) = \int_0^x f(x) \sin(\omega(x-t)) dt$.

4.1.3 The Wronskian

We start with the LDE y''(x) + p(x)y'(x) + q(x)y(x) = 0 and the two initial conditions $y(x_0) = K_0$ and $y'(x_0) = K_1$. When p(x) and q(x) are continuous on the open interval I there exists a unique solution y(x) on this interval.

The general solution can than be written as $y(x) = c_1y_1(x) + c_2y_2(x)$ and y_1 and y_2 are linear independent. These are also all solutions of the LDE.

The Wronskian is defined by:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$$

 y_1 and y_2 are linear independent if and only if on the interval I when $\exists x_0 \in I$ so that holds: $W(y_1(x_0), y_2(x_0)) = 0.$

4.1.4 Power series substitution

When a series $y = \sum a_n x^n$ is substituted in the LDE with constant coefficients y''(x) + py'(x) + qy(x) = 0this leads to:

$$\sum_{n} \left[n(n-1)a_n x^{n-2} + pna_n x^{n-1} + qa_n x^n \right] = 0$$

Setting coefficients for equal powers of x equal gives:

$$(n+2)(n+1)a_{n+2} + p(n+1)a_{n+1} + qa_n = 0$$

This gives a general relation between the coefficients. Special cases are n = 0, 1, 2.

4.2 Some special cases

4.2.1 Frobenius' method

Given the LDE

$$\frac{d^2y(x)}{dx^2} + \frac{b(x)}{x}\frac{dy(x)}{dx} + \frac{c(x)}{x^2}y(x) = 0$$

with b(x) and c(x) analytical at x = 0. This LDE has at least one solution of the form

$$y_i(x) = x^{r_i} \sum_{n=0}^{\infty} a_n x^n$$
 with $i = 1, 2$

with r real or complex and chosen so that $a_0 \neq 0$. When one expands b(x) and c(x) as $b(x) = b_0 + b_1 x + b_2 x^2 + \dots$ and $c(x) = c_0 + c_1 x + c_2 x^2 + \dots$, it follows for r:

$$r^2 + (b_0 - 1)r + c_0 = 0$$

There are now 3 possibilities:

1.
$$r_1 = r_2$$
: than $y(x) = y_1(x) \ln |x| + y_2(x)$.
2. $r_1 - r_2 \in I\!N$: than $y(x) = ky_1(x) \ln |x| + y_2(x)$.
3. $r_1 - r_2 \neq Z$: than $y(x) = y_1(x) + y_2(x)$.

4.2.2 Euler

Given the LDE

$$x^2 \frac{d^2 y(x)}{dx^2} + ax \frac{dy(x)}{dx} + by(x) = 0$$

Substitution of $y(x) = x^r$ gives an equation for r: $r^2 + (a-1)r + b = 0$. From this one gets two solutions r_1 and r_2 . There are now 2 possibilities:

- 1. $r_1 \neq r_2$: than $y(x) = C_1 x^{r_1} + C_2 x^{r_2}$.
- 2. $r_1 = r_2 = r$: than $y(x) = (C_1 \ln(x) + C_2)x^r$.

4.2.3 Legendre's DE

Given the LDE

$$(1-x^2)\frac{d^2y(x)}{dx^2} - 2x\frac{dy(x)}{dx} + n(n-1)y(x) = 0$$

The solutions of this equation are given by $y(x) = aP_n(x) + by_2(x)$ where the Legendre polynomials P(x) are defined by:

$$P_n(x) = \frac{d^n}{dx^n} \left(\frac{(1-x^2)^n}{2^n n!} \right)$$

For these holds: $||P_n||^2 = 2/(2n+1)$.

4.2.4 The associated Legendre equation

This equation follows from the θ -dependent part of the wave equation $\nabla^2 \Psi = 0$ by substitution of $\xi = \cos(\theta)$. Than follows:

$$(1-\xi^2)\frac{d}{d\xi}\left((1-\xi^2)\frac{dP(\xi)}{d\xi}\right) + [C(1-\xi^2) - m^2]P(\xi) = 0$$

Regular solutions exists only if C = l(l+1). They are of the form:

$$P_l^{|m|}(\xi) = (1-\xi^2)^{m/2} \frac{d^{|m|} P^0(\xi)}{d\xi^{|m|}} = \frac{(1-\xi^2)^{|m|/2}}{2^l l!} \frac{d^{|m|+l}}{d\xi^{|m|+l}} (\xi^2 - 1)^l$$

For |m| > l is $P_l^{|m|}(\xi) = 0$. Some properties of $P_l^0(\xi)$ zijn:

$$\int_{-1}^{1} P_{l}^{0}(\xi) P_{l'}^{0}(\xi) d\xi = \frac{2}{2l+1} \delta_{ll'} \quad , \quad \sum_{l=0}^{\infty} P_{l}^{0}(\xi) t^{l} = \frac{1}{\sqrt{1-2\xi t+t^{2}}}$$

This polynomial can be written as:

$$P_{l}^{0}(\xi) = \frac{1}{\pi} \int_{0}^{\pi} (\xi + \sqrt{\xi^{2} - 1} \cos(\theta))^{l} d\theta$$

4.2.5 Solutions for Bessel's equation

Given the LDE

$$x^{2}\frac{d^{2}y(x)}{dx^{2}} + x\frac{dy(x)}{dx} + (x^{2} - \nu^{2})y(x) = 0$$

also called Bessel's equation, and the Bessel functions of the first kind

$$J_{\nu}(x) = x^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu} m! \Gamma(\nu+m+1)}$$

for $\nu := n \in \mathbb{N}$ this becomes:

$$J_n(x) = x^n \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} m! (n+m)!}$$

When $\nu \neq \mathbb{Z}$ the solution is given by $y(x) = aJ_{\nu}(x) + bJ_{-\nu}(x)$. But because for $n \in \mathbb{Z}$ holds: $J_{-n}(x) = (-1)^n J_n(x)$, this does not apply to integers. The general solution of Bessel's equation is given by $y(x) = aJ_{\nu}(x) + bY_{\nu}(x)$, where Y_{ν} are the Bessel functions of the second kind:

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)} \quad \text{and} \quad Y_{n}(x) = \lim_{\nu \to n} Y_{\nu}(x)$$

The equation $x^2 y''(x) + xy'(x) - (x^2 + \nu^2)y(x) = 0$ has the modified Bessel functions of the first kind $I_{\nu}(x) = i^{-\nu} J_{\nu}(ix)$ as solution, and also solutions $K_{\nu} = \pi [I_{-\nu}(x) - I_{\nu}(x)]/[2\sin(\nu\pi)].$

Sometimes it can be convenient to write the solutions of Bessel's equation in terms of the Hankel functions

$$H_n^{(1)}(x) = J_n(x) + iY_n(x) , \quad H_n^{(2)}(x) = J_n(x) - iY_n(x)$$

4.2.6 Properties of Bessel functions

Bessel functions are orthogonal with respect to the weight function p(x) = x. $J_{-n}(x) = (-1)^n J_n(x)$. The Neumann functions $N_m(x)$ are defined as:

$$N_m(x) = \frac{1}{2\pi} J_m(x) \ln(x) + \frac{1}{x^m} \sum_{n=0}^{\infty} \alpha_n x^{2n}$$

The following holds: $\lim_{x \to 0} J_m(x) = x^m$, $\lim_{x \to 0} N_m(x) = x^{-m}$ for $m \neq 0$, $\lim_{x \to 0} N_0(x) = \ln(x)$.

$$\lim_{r \to \infty} H(r) = \frac{\mathrm{e}^{\pm i k r} \mathrm{e}^{i \omega t}}{\sqrt{r}} \quad , \quad \lim_{x \to \infty} J_n(x) = \sqrt{\frac{2}{\pi x}} \cos(x - x_n) \quad , \quad \lim_{x \to \infty} J_{-n}(x) = \sqrt{\frac{2}{\pi x}} \sin(x - x_n)$$

with $x_n = \frac{1}{2}\pi(n + \frac{1}{2}).$

$$J_{n+1}(x) + J_{n-1}(x) = \frac{2n}{x} J_n(x) \quad , \quad J_{n+1}(x) - J_{n-1}(x) = -2\frac{dJ_n(x)}{dx}$$

The following integral relations hold:

$$J_m(x) = \frac{1}{2\pi} \int_0^{2\pi} \exp[i(x\sin(\theta) - m\theta)]d\theta = \frac{1}{\pi} \int_0^{\pi} \cos(x\sin(\theta) - m\theta)d\theta$$

4.2.7 Laguerre's equation

Given the LDE

$$x\frac{d^2y(x)}{dx^2} + (1-x)\frac{dy(x)}{dx} + ny(x) = 0$$

Solutions of this equation are the Laguerre polynomials $L_n(x)$:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} \left(x^n e^{-x} \right) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!} \binom{n}{m} x^m$$

4.2.8 The associated Laguerre equation

Given the LDE

$$\frac{d^2 y(x)}{dx^2} + \left(\frac{m+1}{x} - 1\right) \frac{dy(x)}{dx} + \left(\frac{n + \frac{1}{2}(m+1)}{x}\right) y(x) = 0$$

Solutions of this equation are the associated Laguerre polynomials $L_n^m(x)$:

$$L_n^m(x) = \frac{(-1)^m n!}{(n-m)!} e^{-x} x^{-m} \frac{d^{n-m}}{dx^{n-m}} \left(e^{-x} x^n \right)$$

4.2.9 Hermite

The differential equations of Hermite are:

$$\frac{d^{2}\mathbf{H}_{n}(x)}{dx^{2}} - 2x\frac{d\mathbf{H}_{n}(x)}{dx} + 2n\mathbf{H}_{n}(x) = 0 \text{ and } \frac{d^{2}\mathbf{H}\mathbf{e}_{n}(x)}{dx^{2}} - x\frac{d\mathbf{H}\mathbf{e}_{n}(x)}{dx} + n\mathbf{H}\mathbf{e}_{n}(x) = 0$$

Solutions of these equations are the Hermite polynomials, given by:

$$H_n(x) = (-1)^n \exp\left(\frac{1}{2}x^2\right) \frac{d^n(\exp(-\frac{1}{2}x^2))}{dx^n} = 2^{n/2} He_n(x\sqrt{2})$$
$$He_n(x) = (-1)^n(\exp\left(x^2\right) \frac{d^n(\exp(-x^2))}{dx^n} = 2^{-n/2} H_n(x/\sqrt{2})$$

4.2.10 Chebyshev

The LDE

$$(1-x^2)\frac{d^2U_n(x)}{dx^2} - 3x\frac{dU_n(x)}{dx} + n(n+2)U_n(x) = 0$$

has solutions of the form

$$U_n(x) = \frac{\sin[(n+1)\arccos(x)]}{\sqrt{1-x^2}}$$

The LDE

$$(1-x^2)\frac{d^2T_n(x)}{dx^2} - x\frac{dT_n(x)}{dx} + n^2T_n(x) = 0$$

has solutions $T_n(x) = \cos(n \arccos(x))$.

4.2.11 Weber

The LDE $W_n''(x) + (n + \frac{1}{2} - \frac{1}{4}x^2)W_n(x) = 0$ has solutions: $W_n(x) = \text{He}_n(x)\exp(-\frac{1}{4}x^2)$.

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

$$\begin{array}{ll} y' = a\sqrt{y^2 + b^2} & y = b \sinh(a(x - x_0)) \\ y' = a\sqrt{y^2 - b^2} & y = b \cosh(a(x - x_0)) \\ y' = a\sqrt{b^2 - y^2} & y = b \cosh(a(x - x_0)) \\ y' = a(y^2 + b^2) & y = b \tan(a(x - x_0)) \\ y' = a(y^2 - b^2) & y = b \coth(a(x - x_0)) \\ y' = a(b^2 - y^2) & y = b \tanh(a(x - x_0)) \\ y' = ay\left(\frac{b - y}{b}\right) & y = \frac{b}{1 + Cb \exp(-ax)} \end{array}$$

4.4 Sturm-Liouville equations

Sturm-Liouville equations are second order LDE's of the form:

$$-\frac{d}{dx}\left(p(x)\frac{dy(x)}{dx}\right) + q(x)y(x) = \lambda m(x)y(x)$$

The boundary conditions are chosen so that the operator

$$L = -\frac{d}{dx}\left(p(x)\frac{d}{dx}\right) + q(x)$$

is Hermitean. The normalization function m(x) must satisfy

$$\int_{a}^{b} m(x)y_{i}(x)y_{j}(x)dx = \delta_{ij}$$

When $y_1(x)$ and $y_2(x)$ are two linear independent solutions one can write the Wronskian in this form:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \frac{C}{p(x)}$$

where C is constant. By changing to another dependent variable u(x), given by: $u(x) = y(x)\sqrt{p(x)}$, the LDE transforms into the *normal form*:

$$\frac{d^2u(x)}{dx^2} + I(x)u(x) = 0 \quad \text{with} \quad I(x) = \frac{1}{4} \left(\frac{p'(x)}{p(x)}\right)^2 - \frac{1}{2} \frac{p''(x)}{p(x)} - \frac{q(x) - \lambda m(x)}{p(x)}$$

If I(x) > 0, than y''/y < 0 and the solution has an oscillatory behaviour, if I(x) < 0, than y''/y > 0 and the solution has an exponential behaviour.

4.5 Linear partial differential equations

4.5.1 General

The *normal derivative* is defined by:

$$\frac{\partial u}{\partial n} = (\vec{\nabla} u, \vec{n})$$

A frequently used solution method for PDE's is *separation of variables*: one assumes that the solution can be written as u(x,t) = X(x)T(t). When this is substituted two ordinary DE's for X(x) and T(t) are obtained.

4.5.2 Special cases

The wave equation

The wave equation in 1 dimension is given by

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

When the initial conditions $u(x, 0) = \varphi(x)$ and $\partial u(x, 0)/\partial t = \Psi(x)$ apply, the general solution is given by:

$$u(x,t) = \frac{1}{2} \left[\varphi(x+ct) + \varphi(x-ct)\right] + \frac{1}{2c} \int_{x-ct}^{x+ct} \Psi(\xi) d\xi$$

The diffusion equation

The *diffusion equation* is:

$$\frac{\partial u}{\partial t} = D\nabla^2 u$$

Its solutions can be written in terms of the propagators P(x, x', t). These have the property that $P(x, x', 0) = \delta(x - x')$. In 1 dimension it reads:

$$P(x, x', t) = \frac{1}{2\sqrt{\pi Dt}} \exp\left(\frac{-(x - x')^2}{4Dt}\right)$$

In 3 dimensions it reads:

$$P(x, x', t) = \frac{1}{8(\pi Dt)^{3/2}} \exp\left(\frac{-(\vec{x} - \vec{x}')^2}{4Dt}\right)$$

With initial condition u(x, 0) = f(x) the solution is:

$$u(x,t) = \int_{\mathcal{G}} f(x') P(x,x',t) dx'$$

The solution of the equation

$$\frac{\partial u}{\partial t} - D \frac{\partial^2 u}{\partial x^2} = g(x, t)$$

is given by

$$u(x,t) = \int dt' \int dx' g(x',t') P(x,x',t-t')$$

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution of $u(\vec{x}, t) = v(\vec{x}) \exp(i\omega t)$ in the wave equation. This gives for v:

$$\nabla^2 v(\vec{x},\omega) + k^2 v(\vec{x},\omega) = 0$$

This gives as solutions for v:

1. In cartesian coordinates: substitution of $v = A \exp(i\vec{k} \cdot \vec{x})$ gives:

$$v(\vec{x}) = \int \cdots \int A(k) \mathrm{e}^{i\vec{k}\cdot\vec{x}} dk$$

with the integrals over $\vec{k}^{2} = k^{2}$.

2. In polar coordinates:

$$v(r,\varphi) = \sum_{m=0}^{\infty} (A_m J_m(kr) + B_m N_m(kr)) e^{im\varphi}$$

3. In spherical coordinates:

$$v(r,\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} [A_{lm}J_{l+\frac{1}{2}}(kr) + B_{lm}J_{-l-\frac{1}{2}}(kr)] \frac{Y(\theta,\varphi)}{\sqrt{r}}$$

4.5.3 Potential theory and Green's theorem

Subject of the potential theory are the Poisson equation $\nabla^2 u = -f(\vec{x})$ where f is a given function, and the Laplace equation $\nabla^2 u = 0$. The solutions of these can often be interpreted as a potential. The solutions of Laplace's equation are called harmonic functions.

When a vector field \vec{v} is given by $\vec{v} = \operatorname{grad} \varphi$ holds:

$$\int_{a}^{b} (\vec{v}, \vec{t}) ds = \varphi(\vec{b}) - \varphi(\vec{a})$$

In this case there exist functions φ and \vec{w} so that $\vec{v} = \operatorname{grad} \varphi + \operatorname{curl} \vec{w}$.

The *field lines* of the field $\vec{v}(\vec{x})$ follow from:

$$\dot{\vec{x}}(t) = \lambda \vec{v}(\vec{x})$$

The first theorem of Green is:

$$\iiint_{\mathcal{G}} [u\nabla^2 v + (\nabla u, \nabla v)] d^3 V = \oint_{\mathcal{S}} u \frac{\partial v}{\partial n} d^2 A$$

The second theorem of Green is:

$$\iiint_{\mathcal{G}} [u\nabla^2 v - v\nabla^2 u] d^3 V = \oint_{\mathcal{S}} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) d^2 A$$

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a normal derivative of 0 on the boundary of an area is constant within that area.

The Dirichlet problem is:

$$\nabla^2 u(\vec{x}\,) = -f(\vec{x}\,) \ , \ \vec{x} \in R \ , \ u(\vec{x}\,) = g(\vec{x}\,) \ \text{for all} \ \vec{x} \in S.$$

It has a unique solution.

The Neumann problem is:

$$\nabla^2 u(\vec{x}) = -f(\vec{x}) \ , \ \vec{x} \in R \ , \ \frac{\partial u(\vec{x})}{\partial n} = h(\vec{x}) \ \text{ for all } \ \vec{x} \in S.$$

The solution is unique except for a constant. The solution exists if:

$$-\iiint_R f(\vec{x})d^3V = \oint_S h(\vec{x})d^2A$$

A fundamental solution of the Laplace equation satisfies:

$$\nabla^2 u(\vec{x}) = -\delta(\vec{x})$$

This has in 2 dimensions in polar coordinates the following solution:

$$u(r) = \frac{\ln(r)}{2\pi}$$

This has in 3 dimensions in spherical coordinates the following solution:

$$u(r) = \frac{1}{4\pi r}$$

The equation $\nabla^2 v = -\delta(\vec{x} - \vec{\xi})$ has the solution

$$v(\vec{x}\,) = \frac{1}{4\pi |\vec{x} - \vec{\xi\,}|}$$

After substituting this in Green's 2nd theorem and applying the sieve property of the δ function one can derive Green's 3rd theorem:

$$u(\vec{\xi}) = -\frac{1}{4\pi} \iiint_R \frac{\nabla^2 u}{r} d^3 V + \frac{1}{4\pi} \oiint_S \left[\frac{1}{r} \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \left(\frac{1}{r} \right) \right] d^2 A$$

The Green function $G(\vec{x}, \vec{\xi})$ is defined by: $\nabla^2 G = -\delta(\vec{x} - \vec{\xi})$, and on boundary S holds $G(\vec{x}, \vec{\xi}) = 0$. Then G can be written as:

$$G(\vec{x}, \vec{\xi}) = \frac{1}{4\pi |\vec{x} - \vec{\xi}|} + g(\vec{x}, \vec{\xi})$$

Than $g(\vec{x}, \vec{\xi})$ is a solution of Dirichlet's problem. The solution of Poisson's equation $\nabla^2 u = -f(\vec{x})$ when on the boundary S holds: $u(\vec{x}) = g(\vec{x})$, is:

$$u(\vec{\xi}) = \iiint_R G(\vec{x}, \vec{\xi}) f(\vec{x}) d^3 V - \oiint_S g(\vec{x}) \frac{\partial G(\vec{x}, \vec{\xi})}{\partial n} d^2 A$$