Our Kepler formula-set is now updated to include: (1) the possibility of repulsive $1 / r^{2}$ forces with negative force-constants γ (2) relations needed for scattering problems, namely formulae for the scattering angle θ and impact parameter b for unbounded Kepler orbits as well as general cross-section formulae.

- Coordinates \& Reduced Mass : $\quad \vec{r}_{1}=\vec{R}+\frac{m_{2}}{M} \vec{r}, \quad \vec{r}_{2}=\vec{R}-\frac{m_{1}}{M} \vec{r}, \quad \mu=\frac{m_{1} m_{2}}{M}$
- Centrifugal force \& PE : $\quad \vec{F}_{c f}=\frac{L^{2}}{\mu r^{3}} \hat{r}, \quad U_{c f}=\frac{L^{2}}{2 \mu r^{2}}, \quad$ effective radial $U^{*}=U+U_{\text {cf }}$
- Angular EOM : $\dot{\phi}=\frac{L}{\mu r^{2}} \quad \bullet$ Radial EOMs $: \mu \ddot{r}=F(r)+F_{\mathrm{cf}}(r), \quad E=T+U(r)=\frac{1}{2} \mu \dot{r}^{2}+U_{\mathrm{cf}}(r)+U(r)$
- Path Equation : $u(\phi) \equiv 1 / r(\phi) \rightarrow \quad u^{\prime \prime}+u=-\frac{\mu F(1 / u)}{L^{2} u^{2}} \quad$ and $\quad u^{\prime}=-\frac{\mu \dot{r}}{L}$
- Conics : With (r, ϕ) centered on a focal point and $\mathrm{E} \equiv$ Ellipse, $\mathrm{H} \equiv$ Hyperbola
$\frac{1}{r}=\frac{a}{b^{2}}(\pm 1+e \cos \phi)$ with $\left\{\begin{array}{l}+: \text { E or H-near-branch } \\ -: \text { H-far-branch }\end{array}, \quad e=\frac{c}{a}=\frac{\sqrt{a^{2} \mp b^{2}}}{a}\right.$ with $\left\{\begin{array}{l}-: \mathrm{E} \\ +: \mathrm{H}\end{array}\right.$
- Kepler Orbits $F=-\frac{\gamma}{r^{2}}: r(\phi)=\frac{r_{0}}{\operatorname{sgn}[\gamma]+e \cos \phi}$ with $r_{0}=\frac{L^{2}}{\mu|\gamma|}=\frac{b^{2}}{a}=a\left|1-e^{2}\right|, \quad E=\mp \frac{|\gamma|}{2 a}=\frac{|\gamma|\left(e^{2}-1\right)}{2 r_{0}}$

Bounded orbits: $\quad \tau^{2}=\frac{4 \pi^{2} \mu}{\gamma} a^{3}, \quad r_{0}=\frac{2 r_{\min } r_{\max }}{r_{\min }+r_{\max }}, \quad e=\frac{r_{\max }-r_{\min }}{r_{\max }+r_{\min }}$
Unbounded orbits: $\begin{gathered}\text { scattering } \\ \text { angle }\end{gathered} \theta=\pi-2 \alpha$ with $\tan \alpha=\frac{b}{a}, \quad \underset{\text { parameter }}{\text { impact }} b=\underset{\text { axis }}{\text { semi-minor }} b \odot$

- XSec $: d \Omega \equiv \frac{d A}{r^{2}}=\left\{\begin{array}{l}\sin \theta d \theta d \phi \\ d \theta_{x} d \theta_{y}\end{array}, \frac{d \sigma}{d \Omega}=\frac{b}{\sin \theta}\left|\frac{d b}{d \theta}\right|\right.$ with $\theta=\begin{array}{l}\text { scattering } \\ \text { angle }\end{array} \bullet$ Lumi: $\mathcal{L}=n_{A} N_{e}, \frac{d N_{\mathrm{ev}}}{d t}=\mathcal{L} \sigma$

