
Phys 326 Discussion 6 – Central Force Orbits

Here is our growing collection of useful formulae concerning the two-body central force problem.  Remember 
from our study of particle collections in 325: unscripted CAPITAL letters denote TOTALs for the system if they 
are additive quantities (e.g. M = m1 + m2 ) or CM properties if they are not (e.g.  

!
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	 ● Reduced Mass :   µ =
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	 	 ● Force Equation :      
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The new entry in our collection compared with last week’s discussion is the Path Equation.  

• The E or Force equation gives us the radial motion r(t)as a function of time,  for a given ang. momentum L.

• The L equation gives us the angular motion φ(t)  as a function of time,  once we know r(t) .

• The Path equation bypasses time entirely and gives us r(φ)  → the shape of the orbit in polar coordinates.

The one trick you need to remember about the path equation is to change variables from r to u ≡ 1/r.  
It just turns out that paths are much easier to calculate in the form u (φ) than in the form r (φ).    

Problem 1 : Comet Repelled by a Mysterious Object 	 Checkpoints 1

A mysterious interstellar object O exerts a repulsive inverse cube force  
!
F = (mγ / r3) r̂  on any mass m in its

vicinity.  A comet of mass m starts a great distance away, and moves toward O with speed v0 = 3 γ / (4b0 )
along a straight line whose perpendicular distance from O is b0.  You may assume that the comet’s mass m is 
much less than that of the mysterious object O (so μ becomes very simple ☺︎). 

(a)  Use the path equation to obtain the shape of the orbit, u(φ).  For definiteness, define φ = 0 to correspond to 
the comet’s initial position when it is infinitely far away from the mysterious object. 

(b)  Calculate the apsidal angle of the comet’s trajectory = the net angular interval Δφ through which the 
particle moves from its original position at infinity to its one apse.  To do this, plot the function u(φ) you just 
found, then mentally take the inverse 1/u of your sketch to plot r vs φ.  Now recall from lecture: the L equation 
tells us that the angle φ is always increasing (or always decreasing) with time.  Your r(φ) plot thus also shows 
us the time-evolution of the comet’s r coordinate.  Since the comet came in from infinity, it is in an unbounded 
orbit … what you should find is that r decreases from infinity to a minimum value (periapsis) then back out to 
infinity.  The apsidal angle you are looking for is the angle Δφ between either of those infinities and the 
periapsis point of closest approach. 

1  (a) u(φ) = (3 / 5b0 )sin(5φ / 3)   (b)  54°  (d)  5b0/3  (e)  checkpoint: T = ( ′u 2 + u 2 )L2 / m2  … final: T (φ) = v0
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(c)  Sketch the comet’s path, indicating the apsidal angle Δφ on your sketch.  (It should appear in two places).  

(d)  Calculate the periapsis distance of the comet’s trajectory = its distance of closest approach to O. 

(e)  Calculate and plot the comet’s kinetic energy  T = 1
2 m( !r

2 + r2 !φ 2 )  as a function of φ over its trajectory.  

Take m=2 for convenience; your T(φ) expression will then only involve v0
2 , φ, and numerical values. 

(f)  Figure out the formula for the potential energy U(r) that corresponds to the force  
!
F = (mγ / r3) r̂  exerted by 

the mystery object O. 

(g)  Now calculate and plot the comet’s potential energy U(φ) as a function of angle.  To compare with your 
T(φ) result from part (e), again use m=2 and express your result in terms of v0

2 , φ, and numerical values.

(h)  Add T(φ)+U(φ).  Are you happy with your result?  What does it correspond to? 

(i)  If all went well, you found that T(φ)+U(φ) is just the total, constant energy of the comet.  Great.  
But wait … the potential energy you used was the potential energy due to the central force … what happened to 
the centrifugal potential energy Ucf ≡ L

2 / 2µr2 ?  Where did it go?  If you’re not sure, calculate Ucf (φ) and see 
if you can find it somewhere within your total E = T(φ) + U(φ) expression.  

Problem 2 : Kepler’s Second Law	 Incremental Hints2

Kepler’s three famous laws are all observational.  Unlike Newton’s Laws, they don’t explain the theory behind 
the motion of celestial bodies, rather they describe key features of that motion, with a level of accuracy and 
insight that was unprecedented in the 17th century.  In the 21st century, we can derive the results from our 
underlying theory of mechanics and gravitation.  Kepler’s second law is already within your grasp.  It says: “For 
each of the planets, the straight line connecting the planet to the Sun sweeps out equal areas in equal times.”  
You can derive this using a feature incorporated into several of our above equations: that the angular momentum 
L of the Sun-planet system is conserved.  Amazingly, you don’t need to know anything about the shape of the 
orbit other than it’s in a single plane (which is also a consequence of the angular momentum vector  

!
L  being 

conserved).  Go ahead and derive the relation dA / dt = L / 2μ = constant for a particle of mass μ orbiting around 
a fixed origin.   A long chain of incremental hints is provided in the checkpoint, see if you can find the solution 
without using all of them. ☺︎ 

2  Hints:  SKETCH a segment of a generic orbit (it can have any shape, it only has to be smooth) and draw the little wedge of area dA 
that is swept out when you change angle by a little bit dφ … … for infinitesimally small dφ, the little wedge dA swept out can be 
approximated as a triangle with straight sides … … write vectors for two sides of the triangle, remembering that we want the amount 
dA that’s swept out in a tiny time interval dt (so we can construct dA/dt at the end) … …  one of the vectors is  

!r = the position vector 
pointing to the spot where we began our little motion … … the vector along the orbit involves the vector  

!v  and something to give it 
the right units … … it is  

!v dt  … … the little triangle can be turned into a parallelogram of area 2 dA … … what simple formula gives 
you the area of a parallelogram in terms of the vectors describing two of its sides? … … cross-product … … what is the formula for 
angular momentum? … …  

!
L = !r × µ!v  … … rearrange to get dA / dt.  ☺︎ 


