
Phys 326 Discussion 8 – Captured Paths and Cross-Sections; the Virial Theorem
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Problem 1 : A Captured Path 	 Checkpoints 1 and 2

In lecture we introduced the capture cross-section, σ = π bmax
2 : particles fired with a given initial velocity  

!v0
at a potential well are “captured” when their impact parameter b is below some value bmax.  “Captured” means
the particle cannot return to r = ∞ (cannot escape the potential well).  What exactly happens to such a captured
particle?  Let’s find out, using an attractive force, F = –k / r3, which corresponds to the potential U = –k / 2r2.  
Let’s say this mysterious force is emitted by the Death Star, with some huge mass M located at the origin. 
We will send in particles with initial velocity v0, impact parameter b, and mass m << M.   

(a)  Plot U*(r).  You will see that it can take two different shapes, depending on the relative size of the force 
constant k and L2/m for the incoming particle.  Using the fact that L is related to b, find the capture condition on 
b, and from that get σ = π bmax

2 .

(b)  Use the path equation to determine the path r(φ) for captured particles of mass m.  You will quickly find it 
convenient to define the symbol α ≡ (mk / L2 ) −1  . 

(c)  Sketch the path!  Important:  !φ = L / µr2  tells us that the angle is constantly increasing with time; it will 
keep growing until r reaches some limit like r = ∞ or r = 0.  What shape is the path?  Are the particles actually 
“captured” by the Death Star? 

(d)  Calculate the speed components  vr = !r  and  vφ = r
!φ  as functions of φ.  What happens to them in the 

limit φ → ∞?   (We are using φ as a substitute for time; we could solve for time, but it is really messy.)  Think 
of one or two reasons why the limit you obtained will not occur in practice, despite your calculation. 

1  (a) σ = π (k / mv0
2 )    (b)  r(φ) = α b / sinh(αφ)   (c)  path = inward spiral  (d) vr = −v0 cosh(αφ) ,  vφ = (v0 /α )sinh(αφ)

2  ΔΩmoon ≈ 6.45 × 10–5 sr; ΔΩsun ≈ 6.76 × 10–5 sr  → solar eclipse with visible corona 



Problem 2 : Solid Angle Quickie	 Checkpoints on prev page

Solid angle is the 2D version of angle; as area is to length, solid angle is to angle.  As we wrote in class, 

the differential element of solid angle can be defined by this wordy relation: dΩ = dA on spherical surface
r of spherical surface

.

Solid angle is measured in steradians ≡ radians2 and, honestly, it’s best explained with a familiar example:  

Calculate the solid angles ΔΩmoon and ΔΩsun subtended by the moon and by the sun respectively, both 
as seen from the earth.  Data: The radii of the moon and sun are Rm = 1.74 × 106 m and RS = 6.96 × 108 m.  
Their distances from earth are dm = 3.84 × 108 m and dS = 1.50 × 1011 m (one A.U.)  What do your answers tell 
you about the appearance of the moon and sun in the sky as seen from earth?  What remarkable phenomenon is 
visible to earthlings only because of the rather extraordinary comparison between ΔΩmoon and ΔΩsun ? 

Problem 3 : The Virial Theorem 	

The virial theorem is a very well-known theorem in physics.  The most common way it is stated is that a 
particle held in a bound state by an inverse-square central force field (e.g. gravity, the electric force) has 
kinetic energy equal to half the magnitude of its potential energy.  Since the particle is bound, the force is 
necessarily attractive (F ~ –1/r2), so the potential energy U ~ –1/r is negative.  The total energy is thus 
E = T +U = 1

2 U − U = − 1
2 U = −T  → it’s negative, as it must be for a bound state.  This “rule of thumb” that

the kinetic energy fills up half of the potential-energy well works wonderfully for many common bound states 
(planets in orbit, electrons in atoms); it is a really useful fact to know!  Let’s examine the virial theorem in 
greater detail.

(a)  A mass m moves in a circular orbit in the field of a stationary, attractive central force with potential energy 
U = krn  (with kn > 0  to ensure that the force is attractive).  Prove the virial theorem : T = nU / 2 .  
(The most common appearance of the theorem is for the case n = –1, i.e. for a gravity-like potential U ~ –1/r.  
This is the case described in the introductory paragraph.  As you see, it gives T = −U / 2 = 1

2 U .) 

(b)  We can be even more general than that!  Let’s derive a form of the theorem that applies to any periodic orbit 
of a particle, not just a circle.  First, find the time derivative of the quantity  G = !r ⋅ !p  and, by integrating from 

time 0 to t, show that 
 

G(t) −G(0)
t

= 2 T +
!
F ⋅ !r , where  

!
F  is the net force on the particle and f  denotes 

the average over time of any quantity f. 

(c)  Explain why, if the particle’s orbit is periodic and if we make t sufficiently large, we can make the left-hand 
side of this equation as small as we please.  That is, the left side approaches zero as t→∞ .  FYI: Notice that 
the left-hand side can also be made zero if we choose t = nτ = any integer multiple of the orbital period. 

(d)  Use this result to prove that if  
!
F  comes from the potential energy U = krn , then T = n U / 2 , if now 

f  denotes the time average over a very long time.  FYI: Following the FYI from part (c), you can see that the 

theorem also applies if f  denotes instead the time average over a cycle of the periodic orbit.  That is the more 

common interpretation of T = n U / 2 .  Taylor’s point is that if you average a periodic quantity over a very 
long time, you get the cycle average anyway without having to stop your integral at t = exactly nτ.  


