
Phys 326 Discussion 9 – Symmetries and Principal Axes

Today we will study some important special cases that can greatly simplify our work with inertia tensors: when 
an object has certain symmetries, we can guess the principal axes in advance.  This is hugely valuable!  If we 
know the principal axes (PAs) in advance, we can set up a coordinate system that follows them and then 
calculate the inertia tensor.  As you will prove in the first problem, the inertia tensor is diagonal in this case.  
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IMPORTANT ADVICE : The great mathematician Carl Gustav Jacobi used to tell his students “Invert, always 
invert!” He meant: the solution to a problem can often be simplified by working backwards.  For a proof, 
invert the problem by disproving the converse → hypothesize that the statement you are trying to prove is 
false, then show that this leads to a contradiction.  This advice will be very helpful today!

Problem 1 : Diagonal I                                                                                                   Hints 1,2

(a)  Prove that if ẑ  is a principal axis of an object, then its inertia tensor must have this form:
 

(b)  Prove that if x̂,  ŷ,  and ẑ  are all principal axes of an object, then its inertia tensor I is a diagonal matrix. 
☞  Here lies the enormous advantage of using a coordinate system that follows the principal axes!

(c)  Convince yourself that the three diagonal elements of I are the familiar moments of inertia from 211 / 325.
(i.e. convince yourself that the element Ixx is just the moment of inertia I x̂  for rotation around the x axis).   
☞  If your matrix is diagonal, the eigenvalues Ixx, Iyy, & Izz are the only elements you need; since they are 
ordinary moments-of-inertia, you can often look them up, which makes building I very simple. ☺ 

Problem 2 : Lamina and Reflection Symmetry	

(a)  A lamina is a flat 2D object such as a thin (zero-thickness) plate of sheet metal.  Consider a lamina that is 
rotating about a point O located in the lamina.  Prove that the vector perpendicular to the plate is a PA.   

1 Q1 (a) Follow Jacobi’s advice → suppose I does not have the given form, i.e. that those zeros are non-zero ... then show that there is 
no way the z-axis can be a principal axis.  (b) pretty obvious (c) Just look at the formula for Iij
2 Q2 (a) Hint: pick a good coordinate system (origin at point O, lamina in xy-plane), then consider which elements of the inertia tensor 
are zero by staring at the integrals you must perform to evaluate them.  
  (b) Hints: “Reflection symmetry across the xy-plane” means “nothing changes if you change z to –z” … that means (i) the object’s 
mass density ρ(x,y,z) is an even function of z, and (ii) at any value of x and y, the object’s bounds in z are even, i.e. zmax(x,y) = 
–zmin(x,y) … evaluate some elements of I  … you get the same form of I as in 1(a) ... which proves that the z axis is a PA.  
  (c) Hints: Placing a box face in the xy-plane and the origin at center of the face: x̂  & ŷ  are PAs by reflection symmetry across 
yz-plane and xz-plane respectively ... ẑ  is a PA because of the fundamental eigenvector theorem: since I is real and symmetric, 
it must have 3 perpendicular eigenvectors; we know x̂  & ŷ  are two of them, so x̂ × ŷ = ẑ  must be the third.  

  (d) ẑ  by lamina theorem,  ( x̂ − ŷ) / 2  by reflection symmetry, ( x̂ + ŷ) / 2  by eigenvector theorem.
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(b)  Consider an object that is unchanged by reflection across some plane that passes through the object.  For 
convenience, let’s make this symmetry plane the xy-plane.  Suppose the object is rotated around a point O that 
lies in the symmetry plane.  For convenience, place the origin at the point O.  Show that the axis 
perpendicular to the symmetry plane (here: the z-axis) is a principal axis.  Note: this theorem provides an 
extension of the lamina theorem to include thick flat plates of uniform density, as long as the point of rotation 
lies in the mid-plane of the plate.

(c)  Consider a uniform rectangular slab, e.g. a box.  What are the principal axes for rotation of the box around 
the center of one of its faces?  (not the center of the box)  Provide an argument for each principal axis you 
propose without calculating anything and sketch the result.

(d)  Consider a thin flat right-triangle that lies in the xy-plane with vertices at (x,y) = (0,0), (1,0), and (0,1). 
Without any calculation, figure out its principal axes for rotation around the origin.

Problem 3 : Axisymmetry 	 Hints & Checkpoints 3

(a)  Consider an arbitrary rigid body with an axis of rotational symmetry, which we’ll call ẑ .  What this 
axisymmetry means is that if you rotate the object by any angle around ẑ , the object is completely unchanged.  
Prove that the axis of symmetry ẑ  is a principal axis. 

(b)  Prove that any direction perpendicular to ẑ  (e.g. x̂  or ŷ ) is also a principal axis.

(c)  Finally, prove that the principal moments for rotation around the x̂  and ŷ  eigenvectors are equal (Ixx = Iyy).
☞ Axisymmetric objects have really simple inertia tensors, with only two unique non-zero moments 
(Izz & Ixx = Iyy) … as long as you are rotating around a point that lies on the symmetry axis, of course.  

(extra)  This theorem also applies to objects that are N-fold axisymmetric if N > 2.  “N-fold axisymmetry” 
means that if you rotate the object by 2π / N around its symmetry axis, it is unchanged.  For example, a straight 
rod with a hexagonal cross-section has 6-fold axisymmetry.  The proof of this more general theorem will be in 
the solutions but do give it a try on your own if you have time! 

Problem 4 : Degenerate Eigenvalues	 Checkpoints 4

Many inertia tensors have two or three eigenvalues that are the same.  Such repeated eigenvalues are called 
degenerate eigenvalues.  When this situation occurs, you will have some freedom in your choice of the 
corresponding eigenvectors, i.e. they will not be uniquely determined.  For convenience, let’s align our object so 
its three principal axes are x̂, ŷ, and ẑ , and let’s rotate it around the origin.  Suppose that the moments of inertia 
Ixx and Iyy are equal (i.e. degenerate), while Izz is different.  Show that any linear combination of the 
degenerate eigenvectors is also an eigenvector. 

3 Q3 (a) Follow Jacobi’s advice → Hypothesize that ẑ  is not a PA, then find a consequence that contradicts the symmetry of the object 

…  recall the definition of a PA: rotation around a PA produces  
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4 Q4 Build the inertia tensor for this object … it’s diagonal … construct a random vector  
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